
Cost-Effective Data Analytics across Multiple Cloud Regions
Junyi Shu, Xin Jin, Yun Ma, Xuanzhe Liu, Gang Huang

Peking University

ABSTRACT
We propose a cloud-native data analytics engine for processing
data stored among geographically distributed cloud regions with
reduced cost. A job is split into subtasks and placed across regions
based on factors including prices of compute resources and data
transmission. We present its architecture which leverages existing
cloud infrastructures and discuss major challenges of its system
design. Preliminary experiments show that the cost is reduced by
15.1% for a decision support query on a four-region public cloud
setup.

CCS CONCEPTS
• Networks → Cloud computing; • Computer systems orga-
nization → Distributed architectures.

KEYWORDS
data analytics, cost optimization, job scheduling, multi-cloud
ACM Reference Format:
Junyi Shu, Xin Jin, Yun Ma, Xuanzhe Liu, Gang Huang. 2021. Cost-Effective
Data Analytics across Multiple Cloud Regions. In SIGCOMM ’21 Poster
and Demo Sessions (SIGCOMM ’21 Demos and Posters), August 23–27, 2021,
Virtual Event, USA. ACM, New York, NY, USA, 3 pages. https://doi.org/10.
1145/3472716.3472842

1 INTRODUCTION
Cloud computing has been widely adopted by industry over the
past decade. Services deployed in data centers which are closer to
customers can achieve lower latency on the client side [7]. There-
fore, major cloud providers make services available in multiple
regions all over the world [4, 10].

There are already a few enterprises running business world-
wide and using cloud resources from multiple regions [11]. Under-
standing operational statistics is crucial for optimizing systems and
making business decisions. Cloud providers have provided tools to
aggregate log data for DevOps purposes [3]. Sometimes, business
questions need to be answered based on data from multiple regions.
For example, a cross-border E-commerce platform may have sup-
plier information stored in Asia and customer information stored
in the United States that are both needed to find out customers’
preferences over certain characteristics of suppliers.

However, running analytics queries onmulti-region data is costly
and inefficient. Users of data analytics platforms, such as Snowflake [15],
have to replicate necessary data to a single region before using it,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGCOMM ’21 Demos and Posters, August 23–27, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8629-6/21/08. . . $15.00
https://doi.org/10.1145/3472716.3472842

but transferring infrequently used data to another region incurs
extra transmission and storage cost. Furthermore, cross-continent
data transmission is also time-consuming. It takes 5 minutes on av-
erage to transfer a 1GB file from AWS Cape Town region to Sydney
region.

There have been existing works studying cost optimization of
cloud computing. Many of these works aim to optimize cost for a
certain type of cloud resources, such as VM instances [8, 9]. There
are also studies on job placement across the network which take
bandwidth and latency into account [6, 12]. Job completion time
(JCT) is another optimization goal for geo-distributed data analyt-
ics [13, 17]. A common approach for such problems is to build a
mathematical model with an objective function and a set of con-
straints, and apply a linear/non-linear programming solver to find
the optimal solution.

In contrast, we face a new set of problems when orchestrating
data analytics jobs across cloud regions, which requires a practi-
cal solution to minimize cost. (a) Different and dynamic prices
of compute and storage resources: an EC2 m5.2xlarge instance
costs about 59% more in São Paulo region than in N. Virginia region,
and prices of spot instances are changing constantly. (b) Different
and asymmetric prices of data transmission: prices vary for
each region, and data transfer from continents such as Africa and
South America costs up to 13× more compared to that from North
America for AWS. (c) Heterogeneous, dynamic and asymmet-
ric network bandwidth: the time to send data is 10× more when
crossing continents, and fluctuates all the time. (d) Long running
jobswith complexworkflows: it is common for analytics queries
to take hours to run, and there is usually more than one potential
execution plan. (e) Dynamic datasets: the size and availability of
a dataset may change at any point of time. Many assumptions of
previous works do not stand when these new problems arise.

Region 1

……

Status
Retrievermetadata

AWS Price List
Service API

Job Manager

Job
Scheduler

job states

status

query
execution

plan

query

Task Executor

Transient
Datastore

datasets

functions VMs

subtasks

Region N

Status
Retriever metadata

Job Manager

Job
Scheduler

job states

status

query execution
plan

query

Task Executor

Transient
Datastore

datasets

functions VMs

subtasks

pricings

sync

network
bandwidth

Figure 1: System Architecture

1

https://doi.org/10.1145/3472716.3472842
https://doi.org/10.1145/3472716.3472842
https://doi.org/10.1145/3472716.3472842

SIGCOMM ’21 Demos and Posters, August 23–27, 2021, Virtual Event, USA Junyi Shu, Xin Jin, Yun Ma, Xuanzhe Liu, Gang Huang

2 SYSTEM ARCHITECTURE
Our idea is to continuouslymonitor all factors affecting cost and per-
formance of cross-region analytics jobs and derive a cost-effective
execution plan bounded by a given JCT requirement. Each region
is treated equally so there is no single point of failure. Our solution
leverages existing cloud offerings such as spot VMs and serverless
functions to achieve high scalability. Figure 1 shows the building
blocks of it.
Status retriever. There is a status retriever in each region, which
takes control of collecting and synchronizing mandatory informa-
tion for job scheduling. It collects (a) pricing from respective cloud
vendors through APIs, (b) network bandwidth by periodically com-
municating to other regions, and (c) metadata of datasets in its
region. The most crucial parameters that it collects are prices of
data transfer between regions and prices of compute resources in
each region. Bandwidths are also helpful as we may want to set a
limit on job completion time. Status retrievers in all regions have to
synchronize data through a peer-to-peer network so job scheduler
in each region has enough information to make a decision.
Job scheduler. A job scheduler plays the same role as Catalyst
optimizer on Spark SQL [5]. It takes a data query and metadata of
source datasets as input and generates a physical execution plan.
Additionally, cost and network bandwidth are taken into account
when selecting a plan in our design. In many cases, placement of
jobs and intermediate results becomes a dominating factor instead
of local I/O operations.
Job manager. A job manager persists the current execution plan
generated by job scheduler and corresponding job states for each
job. It propagates the execution plan and job states to all other
job managers in remote regions. The job manager in each region
fires one or more subtask executions according to the execution
plan. After a subtask completes, the job manager invokes the job
scheduler to re-evaluate the execution plan, and broadcasts job
states and potential plan changes. The job manager may disrupt
subtask execution due to a changed plan.
Task executor. A task executor consists of compute resources. It
is built on top of existing cloud offerings to remove the resource
constraints of some previous works [12]. Because there is no sta-
ble access pattern, and each job requires a different amount of
resources, leveraging serverless functions (e.g., AWS Lambda[2])
as the main executor improves resource utilization [14]. Using spot
VM instances to run the queries may save cost when incoming
workloads can be well predicted.
Transient datastore. The results of subtasks are stored in a tran-
sient datastore. Transient data is not deleted right after it is passed
to the next subtask as it may be used in later stages. The job man-
ager scans the datastore regularly to identify transient data that is
not referred by any execution plans after a certain amount of time
and removes it to avoid unnecessary storage cost.

3 PRELIMINARY RESULTS
To verify the effectiveness of the proposed system, we have con-
ducted an experiment on AWS.We generated a TPC-DS [16] dataset
of 10GB. Among the dataset, We put 4 relatively small tables in
an Amazon S3 [1] bucket of one of the regions, and we evenly
distributed a large table to all 4 regions.

Table 1: Cost of Different Job Placement Strategies

Strategy Compute($) Network($) Total($)
Aggregation 0.0396 0.2760 0.3155
In-place 0.1007 0.0893 0.1900

Optimized In-place 0.0720 0.0003 0.0723
Hybrid 0.0580 0.0033 0.0614

We simulated Query 7 of TPC-DS test suite in Python programs
on EC2 c5d.2xlarge spot instances. We compared our hybrid strat-
egy against 3 other strategies. (a) Aggregation: this strategymoves
all data to the region with the lowest compute cost and does all com-
putation there. (b) Naive In-place: we do as much computation as
possible in each region without moving any data beforehand, and
then we aggregate the intermediate results in one of the regions. (c)
Optimized In-place: we add optimization to distribute the small
tables to all regions before each region does its computation (the
WAN-usage optimal solution). (d) Hybrid: We combined (a) and (c).
Decisions are made based on prices of compute and data transfer.
For example, for regions with high compute prices but relatively
low network prices, original data should be transferred elsewhere
to reduce cost.

Table 1 shows our hybrid strategy achieved an additional cost re-
duction by 15.1% versus optimized in-place computation. Although
optimized in-place strategy is WAN-usage optimal, it does not
consider the facts that the network prices between regions are het-
erogeneous and prices of compute vary in different regions. When
price factors are taken into account, it becomes sub-optimal.

4 DISCUSSION
We identify the main challenges to build the proposed system.
Challenge#1 Design an efficient job scheduling algorithm.
Existing query optimizers such as Catalyst [5] assign each opera-
tion a respective cost based on its amount of utilized resources, and
search for the “best” execution plan. Execution of such an algorithm
itself can be time-consuming and incur significant overheads. Tak-
ing actual cost and network bandwidth into account complicates
the problem even further. An algorithm that quickly finds a good
enough execution plan is needed.
Challenge#2 Estimate required resources for subtasks. Both
spot VMs and serverless functions require a certain level of provi-
sioning. Both over-provisioning and under-provisioning should be
avoided if possible. Program analysis techniques can be applied to
estimate minimummemory needed for a subtask to avoid exceeding
allocated memory or allocating too much memory.
Challenge#3 Manage job states between regions. The cross-
region data analytics engine must be fault-tolerant. All job states
are shared among job managers. When the job manager in a region
fails to function properly, other regions should be able to detect it
and take over, which also means existing jobs must be migrated to
other regions.
Challenge#4 Avoid unnecessary execution plan switching.
There are clear benefits to adaptively switch to a new execution
plan at runtime. However, if execution plan switching happens too
frequently, a job may never complete.

2

Cost-Effective Data Analytics across Multiple Cloud Regions SIGCOMM ’21 Demos and Posters, August 23–27, 2021, Virtual Event, USA

REFERENCES
[1] Amazon Web Services 2021. Amazon S3. https://aws.amazon.com/s3/.
[2] Amazon Web Services 2021. AWS Lambda. https://aws.amazon.com/lambda/.
[3] Amazon Web Services 2021. Centralized Logging.

https://aws.amazon.com/solutions/implementations/centralized-logging/.
[4] Amazon Web Services 2021. Regions and Availability Zones.

https://aws.amazon.com/about-aws/global-infrastructure/regions_az/.
[5] Databricks 2021. Catalyst Optimizer. https://databricks.com/glossary/catalyst-

optimizer.
[6] Tarek Elgamal. 2018. Costless: Optimizing cost of serverless computing through

function fusion and placement. In 2018 IEEE/ACM Symposium on Edge Computing
(SEC). IEEE, 300–312.

[7] Anshul Gandhi and Justin Chan. 2015. Analyzing the Network for AWS Dis-
tributed Cloud Computing. SIGMETRICS Perform. Eval. Rev. 43, 3 (Nov. 2015),
12–15. https://doi.org/10.1145/2847220.2847224

[8] Kyungyong Lee and Myungjun Son. 2017. DeepSpotCloud: Leveraging Cross-
RegionGPU Spot Instances for Deep Learning. In 2017 IEEE 10th International Con-
ference on Cloud Computing (CLOUD). 98–105. https://doi.org/10.1109/CLOUD.
2017.21

[9] Ming Mao and Marty Humphrey. 2011. Auto-scaling to minimize cost and
meet application deadlines in cloud workflows. In SC ’11: Proceedings of 2011
International Conference for High Performance Computing, Networking, Storage
and Analysis. 1–12.

[10] Microsoft 2021. Azure geographies. https://azure.microsoft.com/en-us/global-
infrastructure/geographies/.

[11] Netflix 2016. Completing the Netflix Cloud Migration.
https://about.netflix.com/en/news/completing-the-netflix-cloud-migration.

[12] Suraj Pandey, Adam Barker, Kapil Kumar Gupta, and Rajkumar Buyya. 2010.
Minimizing Execution Costs when Using Globally Distributed Cloud Services. In
2010 24th IEEE International Conference on Advanced Information Networking and
Applications. 222–229. https://doi.org/10.1109/AINA.2010.30

[13] Qifan Pu, Ganesh Ananthanarayanan, Peter Bodik, Srikanth Kandula, Aditya
Akella, Paramvir Bahl, and Ion Stoica. 2015. Low Latency Geo-Distributed
Data Analytics. SIGCOMM Comput. Commun. Rev. 45, 4 (Aug. 2015), 421–434.
https://doi.org/10.1145/2829988.2787505

[14] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. 2019. Shuffling, Fast and Slow:
Scalable Analytics on Serverless Infrastructure. In 16th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 19). USENIX Association,
Boston, MA, 193–206. https://www.usenix.org/conference/nsdi19/presentation/
pu

[15] Snowflake 2021. Sharing Data Securely Across Regions and Cloud Plat-
forms. https://docs.snowflake.com/en/user-guide/secure-data-sharing-across-
regions-plaforms.html.

[16] TPC 2021. TPC-DS benchmark. http://www.tpc.org/tpcds/.
[17] Raajay Viswanathan, Ganesh Ananthanarayanan, and Aditya Akella. 2016. CLAR-

INET: WAN-Aware Optimization for Analytics Queries. In 12th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI 16). USENIX Asso-
ciation, Savannah, GA, 435–450. https://www.usenix.org/conference/osdi16/
technical-sessions/presentation/viswanathan

3

https://doi.org/10.1145/2847220.2847224
https://doi.org/10.1109/CLOUD.2017.21
https://doi.org/10.1109/CLOUD.2017.21
https://doi.org/10.1109/AINA.2010.30
https://doi.org/10.1145/2829988.2787505
https://www.usenix.org/conference/nsdi19/presentation/pu
https://www.usenix.org/conference/nsdi19/presentation/pu
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/viswanathan
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/viswanathan

	Abstract
	1 Introduction
	2 System Architecture
	3 Preliminary Results
	4 Discussion
	References

