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Abstract

Cross-cloud data replication is vital for improving reliabil-
ity and performance. Since cloud providers lack native sup-
port, users turn to open-source solutions that rely on VMs.
However, these are slow to provision, leading to high repli-
cation delays and costs. We propose a serverless approach
for data replication using cloud functions, which cut provi-
sioning overhead from tens of seconds to just a few. While
functions offer sufficient bandwidth, they suffer from per-
formance asymmetry across clouds and variability among
instances. Our system, AReplica, mitigates this uncertainty
through proactive planning and adaptive runtime adjustments.
Prior to replication, AReplica formulates an SLO-compliant
plan. During runtime, it employs decentralized scheduling to
manage slow instances and uses changelog propagation and
batching to further reduce costs. Implemented on three major
clouds, AReplica outperforms existing solutions by reducing
replication delay by 61%-99% with cost savings of up to three
orders of magnitude. On production traces, it keeps p99.99
replication delay below 10 seconds.
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Figure 1. Cross-region bucket replication.

1 Introduction

Data replication across clouds and regions is essential for
ensuring data availability and reliability, as well as improving
access latency for cloud applications [41, 53, 58, 67, 70, 75,
83, 84]. Although cloud providers strive to isolate the im-
pacts of individual incidents, region-wide outages are not rare
for cloud platforms [12, 21, 29]. Sometimes, these accidents
can span multiple regions [3] or cause severe data loss [4].
By replicating data across different geographic regions or
cloud platforms, organizations can safeguard against such
localized failures. Moreover, cross-cloud/region data replica-
tion improves data access latency by bringing data closer to
end users, which ensures a seamless user experience across
diverse locations.

Object storage, such as Amazon S3 [10], Azure Blob Stor-
age [15], and Google Cloud Storage [30], is typically used
to store unstructured data which accounts for 80%-90% of
enterprise data according to multiple analyst estimates [2].
Today, even applications that manage structured data, such as
database engines, start leveraging object storage as their back-
end storage solution for various reasons. Notable examples
include Snowflake and RocksDB [39, 55, 78].

Object storage exhibits two key patterns based on analysis
of public traces [33, 57]. First, objects are highly diverse in
terms of size ranging from a few bytes to many terabytes
while small objects dominate. The replication system should
be able to handle small objects with low overheads while
avoiding high tail latency caused by large objects. Second, re-
quest rates are highly variable, with significant fluctuations in
throughput over short periods. The replication system should
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Figure 2. PUT request distribution in the IBM COS traces.

be able to maintain steady and predictable performance with-
out significant resource overprovisioning.

There are many existing solutions for data replication of
object storage. Major clouds provide proprietary services that
support object replication across regions [35, 37, 38]. While
strong consistency can significantly ease the development
of some distributed applications, it imposes significant la-
tency and availability trade-offs in wide-area environments.
An eventual consistency model is a more practical choice and
adopted by major clouds in their cross-region replication so-
lutions. For use cases such as data archival [5], data lake [45],
and content delivery [6], a modest replication lag is accept-
able in exchange for higher performance and availability of
the main application.

Yet these proprietary solutions have a couple of limitations.
First, cloud providers lack the incentive to support cross-cloud
data replication, as it would make it easier for users to migrate
to a competitor. Second, intra-region replication delays within
a cloud typically range from tens of seconds for small objects
to tens of minutes for larger ones or during periods of high
load [34]. Third, enabling eventually consistent replication
incurs extra costs, including storage overheads on versioning
and extra service fees on fast replication.

Skyplane [60, 81] is an open-source, platform-independent,
VM-based solution that enables cross-cloud/region data repli-
cation between regions of major cloud providers, without
requiring native support from them. Nevertheless, the VM-
based approach has high replication delay and cost. Although
VMs offer sufficient bandwidth for replication, provisioning
a VM can take tens of seconds, making it difficult to handle
transient traffic efficiently. Moreover, VMs often incur a sub-
stantial minimum billable duration, leading to non-negligible
costs for short-duration tasks.

Serverless computing [63, 73] emerges as a promising so-
lution, offering invocation times typically under a second
and billing at millisecond-level granularity, making it ideal
for short-duration tasks like replicating small objects. Based
on our characterization, cloud functions, just like VMs, can
provide satisfactory ingress/egress bandwidth, with perfor-
mance scaling nearly linearly with the number of workers.
This ensures that even relatively large objects can be repli-
cated quickly with sufficient parallelism.
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Figure 3. Write throughput in the IBM COS traces.

However, our characterization reveals two key challenges
of using cloud functions for cross-cloud/region replication.
First, the ingress/egress bandwidth is not simply dependent on
the source and destination regions. Unique traits of different
cloud platforms and regions must be taken into consideration.
Second, the effective bandwidth of a cloud function can vary
from instance to instance, and there is no clear pattern that
we can leverage to predict and act in advance.

To address the inherent challenges of inter-cloud/region
performance asymmetry and inter-instance performance vari-
ability of cloud functions, AReplica introduces dynamic strat-
egy optimization and decentralized part-granularity schedul-
ing. AReplica’s strategy planner formulates a replication plan
aligned with a user-defined SLO by leveraging a distribution-
aware performance model. Its decision-making process in-
tegrates insights into the characteristics of cloud functions
at both the source and destination regions, as well as the
dynamics of AReplica’s replication workflow at varying paral-
lelization levels. At runtime, rather than dispatching data parts
from each replicator instance uniformly, AReplica’s replica-
tion engine enables replicator instances to autonomously ac-
quire data parts from a shared pool, naturally adapting to
performance variations and mitigating the long tail across the
hundreds of replicator instances.

To further reduce the replication cost, AReplica avoids
unnecessary replication as much as possible. The immutable
nature of object storage forces a full replication of an object
even when it is created from existing objects or only partially
updated. AReplica opportunistically propagates changelogs
rather than the objects. Common operations, such as copy and
concatenation of existing objects, incur near-zero cost with
AReplica. AReplica also aggregates frequent updates on hot
objects as long as the user-defined SLO is not violated.

We implement a prototype of AReplica as a set of serverless
functions with a shared core library and conduct a compre-
hensive evaluation on three major clouds (AWS, Azure and
Google Cloud Platform). The evaluation results show that
AReplica outperforms SkyPlane and the cloud platforms’ pro-
prietary solutions by reducing 61%-99% replication delay
while achieving a cost saving of up to three orders of magni-
tude on common object sizes. We also run AReplica against a
60-minute real-world cloud object storage trace [33, 57] and
demonstrate that AReplica can stay within a 10-second p99.99
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Figure 4. Breakdown of Skyplane replication time and cost.

SLO for production workloads. A CLI version of AReplica is
available at https:/github.com/pkusys/LambdaReplicaC
LI and https://doi.org/10.5281/zenodo.17198608.

2 Object Storage

Object storage is a data storage solution that abstracts data
as discrete units (i.e., objects). One of the defining charac-
teristics of object storage is its high scalability. It can handle
vast amounts of data across distributed systems, making it
ideal for cloud environments. All major cloud providers have
object storage services today [10, 15, 30], and many cloud
applications store their unstructured data in object storage.

Read and write characteristics. Compared to traditional
storage systems, object storage possesses distinct read and
write characteristics. First, object storage provides a simple
PUT/DELETE write interface. Once an object is created, it
cannot be modified in part. When changes are made, a new
version must be created to overwrite the original one. Second,
the GET interface is more flexible, allowing users to read a
continuous segment of an object from a given offset. It avoids
unnecessary read of unneeded data and can accelerate read of
large objects by parallelizing it. Third, object storage allows
a large object to be divided into smaller parts and written in
parallel. It improves the efficiency and reliability of uploading
a large object by breaking it into manageable chunks.

Usage patterns. To reveal typical usage patterns of cloud
object storage, we analyze the IBM Cloud Object Storage
(COS) traces [33, 57]. The dataset contains around 1.6 billion
requests. Each individual record represents an operation is-
sued in IBM COS during a single week. From the traces, we
draw two important conclusions. First, small objects domi-
nate in cloud object storage. In Figure 2, we show the size
distribution of all the PUT requests. ~80% of the PUT re-
quests are below 1MB. Although other major clouds have
not revealed exact numbers, estimates are in the same range
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Figure 5. Handling dynamic workloads with Skyplane.

based on public information [1]. Second, request rates are
unstable over time. In Figure 3, we show the average write
throughput per minute served in the traces. Throughput can
change sharply from minute to minute. The variation becomes
even more pronounced when analyzed at the per-tenant level.

Cross-cloud/region bucket replication. Cross-region bucket
replication [35, 37, 38] is a feature offered by cloud providers
that allows automatic asynchronous replication of objects be-
tween buckets in different regions. Using cross-region bucket
replication can bring a few clear benefits. First, placing data
closer can improve access latency for users who are geo-
graphically distant from the source bucket. Second, it avoids
repetitive cross-region GET requests for frequently accessed
items, thereby reducing data egress costs. Finally, it improves
data availability and durability in case of regional outages.

However, cross-region bucket replication has its limita-
tions. First, cloud providers have little incentive to support
cross-cloud replication, as it could facilitate data migration to
competitors. This lack of cross-cloud replication support pre-
vents users from storing data across multiple clouds. Second,
replication latency within a single cloud remains high and
unpredictable, ranging from tens of seconds to tens of min-
utes [34]. Third, replication requires versioning to be enabled
on both the source and destination buckets, which introduces
additional storage costs and increases the complexity of man-
aging the lifecycles of versioned objects.

Skyplane [60, 81] is an open-source replication system
that bypasses the restrictions imposed by cloud providers,
enabling object replication between major clouds. It further
optimizes performance through the use of overlays. However,
for each object it transfers, Skyplane creates one or more
VMs, deploys containers on them, transfers the object, and
then shuts the VMs down. The workflow is both slow and
costly for common object sizes. In Figure 4, we characterize
the time and cost of Skyplane replicating a 10 MB object from
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Figure 7. Aggregate bandwidth vs. # of functions.

AWS us-east-1 to us-east-2. Only 2% of the time is spent on
data transfer, while over 99% of the cost is spent on the VMs.

The replication delay and cost of Skyplane remain sig-
nificant even after we optimize the open-source version of
Skyplane by keeping VMs alive and amortizing the overhead
across multiple transfers. In Figure 5, one of the IBM COS
traces from a tenant with moderate usage is replayed. We
configure Skyplane to use one VM in each region and au-
tomatically shut down the VMs after they are idle for five
minutes, one minute, and twenty seconds. The replication de-
lay can reach a few minutes when VM instance provisioning
is necessary and when there are transient bursts. And aggres-
sively shutting down VMs in twenty seconds only saves less
than 30% VM cost compared to a keep-alive strategy.

3 Charaterization of Serverless Computing

Considering the size distribution and load fluctuation of
cloud object storage, serverless computing, such as AWS
Lambda [13], Azure Functions [18], and Google Cloud Run
Functions [28], becomes a natural replacement for VMs.
Serverless computing is a cloud computing paradigm where
the lower-layer compute resources (i.e., VMs and containers)
are managed by the cloud providers [63, 73]. Instead, cloud
functions are exposed to users as the interface.

Using cloud functions for object replication yields a few
advantages. Compared to VMs, the start time of cloud func-
tions is highly optimized [46, 48, 56, 69, 72], which reduces
the overhead on small object replication. With high elasticity,
we can create many parallel cloud functions instantaneously
to react to sudden bursts. Furthermore, the millisecond-level
billing of cloud functions can bring significant cost savings.
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Figure 8. Asymmetric behaviors of different cloud functions.

However, there is limited understanding about the perfor-
mance of different serverless computing platforms on data
transfer tasks between cloud regions, although previous work
has characterized cross-cloud/region transfer rates of cloud
VMs [60], and intra-region performance models are built for
cloud functions or workflows of them [61, 62, 68, 74, 86, 88].
Therefore, we first validate the feasibility of serverless cross-
cloud/region replication and identify the challenges.

Opportunity #1: satisfactory bandwidths. Unlike VMs
which have a set of fixed specifications, the number of vCPUs
and total memory size of a cloud function are often config-
urable in finer granularity. In Figure 6, we show the download
and upload rates in cloud regions on the East Coast of the US.
On AWS and Azure, only memory is configurable, and CPUs
and network bandwidth scale proportionally with memory,
whereas GCP allows to configure CPU and memory inde-
pendently. We have three key findings. First, all three clouds
provide a bandwidth of a few hundred Mbps between differ-
ent regions, which allows users to transfer a small object in
seconds with a single function. Second, the links between
geographically close regions are generally faster, although
local access may not be the fastest. Third, there is a sweet
spot for each platform where one cannot achieve a higher
bandwidth with a more expensive configuration.

Opportunity #2: near-linear performance scaling. How-
ever, a naive serverless approach is unviable for arbitrary
objects. Cloud functions have a hard execution time limit(e.g.,
15 minutes for AWS Lambda [23]). While a single function
can achieve a bandwidth of several hundred Mbps, this still
imposes an upper bound on the size of an object that can be
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Figure 9. Performance variability of function instances.

replicated in an invocation. To allow replication of a large ob-
ject and concurrent replication of many objects, we next verify
whether serverless computing can scale with the number of
functions. In Figure 7, we run a given number of functions in
parallel and sum up their aggregate bandwidth. The results
show that 1) the aggregate bandwidth increases near-linearly
with the number of functions for all three platforms; ii) we
can easily reach over a few Gbps aggregate bandwidth with
64 or fewer functions, even for those slow links.

Challenge #1: asymmetric performance of clouds/regions.
Unlike Skyplane which creates VMs in both the source and
destination regions, data replication with cloud functions has
to be one-sided. The reason is that two cloud functions are not
addressable by each other. In Figure 8, we replicate a 1GB
object pairwise between AWS us-east-1, Azure eastus, and
GCP us-east1. Surprisingly, the replication speeds do not only
depend on the source and destination pair but also vary based
on where the cloud functions are run. Both the average speed
and the variance may differ between platforms. Therefore, a
replication system has to choose the right platform and region
to run the functions in order to meet its target SLO.

Challenge #2: performance variability of instances. Al-
though the aggregate performance can grow with increased
concurrency in Figure 7, each function instance does not con-
tribute to the aggregate bandwidth equally. In Figure 9, we
run five function instances and each of them transfers a 1GB
object from AWS us-east-1 to Azure eastus repetitively. The
bandwidth between instances differs by more than a factor of
2. Replication speeds can vary significantly, even when the
source and destination regions are identical and the instances
have exactly the same configuration. There are no clear pat-
terns indicating which function instance is more likely to be
impacted. From a user’s perspective, it appears completely
random. This means that when there is a large amount of func-
tion instances, some of them can be expected to run slowly.

4 JReplica Overview

AReplica is a serverless object replication system that achieves
sub-minute replication delay with minimal cost. As Figure 10
shows, at the heart of AReplica is a replication strategy planner
based on its distribution-aware performance model and a
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Figure 10. AReplica overview.

distributed replication engine that employs decentralized part-
granularity scheduling.

Replication engine. The replication engine replicates an ob-
ject or parts of it from the source bucket to the destination
bucket with one or more cloud functions. When an object is
replicated in a distributed manner, the replication engine miti-
gates the performance variability among function instances
with autonomous subtask distribution (§5.1). The replication
engine also guarantees eventual consistency (§5.2).

Performance profiler. When a cloud platform or a user wants
to onboard a new cloud platform or a new cloud region to
AReplica, it requires offline profiling to collect necessary
performance metrics. The performance model that AReplica
relies on tunes its parameters for new platforms/regions ac-
cording to the profiling results (§5.3).

Strategy planner. Before replicating an object, AReplica’s
strategy planner decides the appropriate region to execute
the task and the level of parallelism based on the perfor-
mance model with a goal to meet the SLO (§5.3). The strat-
egy planner opportunistically optimizes replication cost with
changelog propagation and SLO-bounded batching (§5.4).

Logger. Because the transfer rates between regions may
change after offline profiling, in order to keep the perfor-
mance model accurate over time, a logger keeps track of
the replication time of representative tasks and periodically
updates the parameters of the performance model.

5 AReplica Design

In this section, we first introduce the workflow of AReplica’s
replication engine, especially how AReplica handles perfor-
mance variability in distributed replication (§5.1) and how
it ensures eventual consistency (§5.2). Next, we formulate
the replication time of AReplica’s workflow as a distribution-
aware analytical model and show how to derive an SLO-
compliant replication plan from it (§5.3). Finally, we describe
our opportunistic cost optimization strategy of changelog
propagation and SLO-bounded batching (§5.4).

5.1 Variability-Tolerant Replication Engine

The workflow of cross-cloud/region replication. Figure 11
shows the four stages of replicating an object from one region



EUROSYS '26, April 27-30, 2026, Edinburgh, Scotland Uk

A

©PUT(Obj1)

Obj1
Bucket 2

@ uploads

D notifies downloads

event |invokes

! replicator|
listener

Cloud Region 1 Cloud Region 2

Figure 11. The workflow of serverless object replication.

| | 2 s

Junyi Shu, Xiaolong Huang, Gang Huang, Hong Mei, Xuanzhe Liu, and Xin Jin

Algorithm 1 Decentralized part-granularity scheduling

Replicator 1 Replicator 2 Replicator 1 Replicator 2
4 parts/second 2 parts/second 4 parts/second 2 parts/second

execution time
1.5 seconds

execution time
1 second 1.25 seconds

(a) Equal (b) Optimal
Figure 12. Sub-optimality of equal distribution of data parts.

execution time
2 seconds

execution time

to another when (0) an object is created. (1) Cloud notification:
when an object is created or deleted, a JSON-format notifi-
cation is generated by the cloud platform [17, 22, 25]. The
notification includes the metadata of an object, which allows
a function/VM to post-process it accordingly. @) Function in-
vocation: one or more replicator functions are invoked either
at the source region or at the destination region and become
ready for data replication. (3) Data download: a replicator
function downloads data from the source bucket to its local
storage. (4) Data upload: a replicator function uploads data
from its local storage to the destination bucket.

Distributed replication. While most objects can be replicated
with a single function, replication of a relatively large object
(e.g., > 64MB) can be significantly accelerated by download-
ing and uploading parts of it in a distributed manner with
additional functions. The key problem is how the data parts
are distributed to the replicator functions. Because an orches-
trator can not directly communicate with the functions after
invoking them, a straightforward approach is to assign a fixed
set of parts to each function at invocation, which incurs min-
imal scheduling overhead. This approach works fairly well
when there is little performance variability. However, as Fig-
ure 9 shows, the performance of concurrent function instances
can be very diverse. Figure 12 provides an illustrative exam-
ple of how performance variability impacts the replication
time of distributed replication. Replicator 1 can replicate four
data parts per second, while Replicator 2 can only process
two per second. The optimal plan is to assign five data parts
to Replicator 1 and three to Replicator 2 rather than giving
each function four parts. When many performance-variable
function instances cooperate on a replication task, it is more
likely to observe one or more extremely slow instances.

1: function ORCHESTRATOR(0bj, num_func)

2: task_id « init_replication(obj)

3 completed_parts[task_id] =0

4: num_parts «— create_part_pool(obj)

5: for i = 1..num_func do

6 invoke(REPLICATOR (task_id, num_parts))
7: function REPLICATOR(task_id, num_parts)

8 while part_pool # 0 do

9 part < get_part_from_pool()

10: download_and_upload(task_id, part)

11: completed_parts[task_id] += 1

12: if completed_parts[task_id] = num_parts then
13: finish_replication(task_id)

Essentially, our goal for distributed replication is to min-
imize the maximum execution time across all the replicator
functions. However, it is practically difficult to achieve op-
timal scheduling because the performance of each function
instance is not static, and we have no means to accurately
forecast it. Therefore, to achieve the best possible scheduling
under uncertainty, we have to schedule at data part granularity
instead of scheduling all the parts at once.

Decentralized part-granularity scheduling. Our key idea is
to assign a data part to an available function instance as soon
as possible. Unlike using VMs, an orchestrator function can-
not directly provide additional instructions to the replicator
functions once the replicator functions are invoked. Instead,
as Algorithm 1 depicts, a replication task is first assigned a
unique task_id at line 2, we then create a pool of data parts
with their metadata kept in shared external storage (i.e., cloud
databases) at line 4. Whenever a replicator function becomes
available, it actively retrieves another part from the pool and
replicates it by calling cloud APIs to download and upload
the parts (lines 9-10). When all the parts are replicated, the
replicator function that delivers the last part concludes the
replication task (line 13).

The size of these parts is a critical parameter. There is
a fundamental trade-off: larger parts are more efficient by
avoiding extra API calls but limit scheduling flexibility, as a
slow function can delay the entire process if it gets stuck on a
large part. Conversely, smaller parts allow for finer-grained
load balancing but increase the overhead per part. Through
empirical analysis, we find that a part size of 8MB strikes
an effective balance, as we observe only marginal overhead
reduction beyond this size.

Decentralized part-granularity scheduling allows fast func-
tion instances to process more data parts than slow ones so
that the execution time across the function instances is more
balanced. Furthermore, it requires no interaction between the
participants and triggers only two external storage accesses
per data part (one to claim the part and another to update its
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status), achieving the benefits with minimal overhead. Using
managed NoSQL databases like Amazon DynamoDB [8],
these operations typically complete with single-digit millisec-
ond latency. The monetary cost (e.g., $0.6250 per million
writes for Amazon DynamoDB in the us-east-1 region) is
also negligible compared to the replication itself (single-digit
dollars per 100GB.

5.2 Eventual Consistency Guarantees

AReplica’s replication engine must ensure the objects are
eventually replicated to the destination correctly. Existing
bulk replication systems [60, 81] assume that the replicated
objects are static and there are no concurrent replication
tasks. Alternatively, the cross-region bucket replication fea-
ture [35, 37, 38] provided by cloud platforms relies on object
versioning where each version of an object is static and can
be replicated without interfering with others.

Although enabling versioning ensures correctness, it incurs
consequential storage cost. For example, if each object is
updated once a day, versioning at least doubles the storage
cost because the lifecycle rules are at day-granularity (i.e., a
non-current version must wait for at least a day to expire).
Our goal is to achieve eventual consistency without incurring
significant extra cost or changing user behaviors.

There are two race conditions which can break eventual
consistency without versioning enabled under AReplica’s de-
sign. First, in Figure 13, if two PUT operations are called on
the same object in the source bucket, two concurrent PUTSs
will be triggered on the destination object. Object storage does
not have a deterministic behavior on concurrent writes on the
same object. Possible results include: i) all of the requests
succeed and the resulting object can come from any of them;
ii) some or all of the requests fail. Therefore, we must avoid
concurrent replications. Second, in Figure 14, when a large
object is split into parts and handled by multiple replicators,

Algorithm 2 Replication Lock

1: function LOCK(obj_key, etag, seq)

2 lock « try_lock(obj_key)

3 if lock.status = success then

4 return true

5: else if lock.seq = NULL or lock.seq < seq then
6 lock.seq < seq; lock.etag « etag

7 return false
8: function UNLOCK(obj_key, lock)
9 etag « lock.etag; seq « lock.seq

10: release_lock(lock)

11: if etag # NULL then

12: cur_etag < get_etag(obj_key)

13: if etag # cur_etag then

14: trigger_replication(obj_key, etag, seq)

if another PUT request is made successfully in the middle, the
replicated object can be assembled from inconsistent parts.

Object-granularity replication lock. To prevent concurrent
PUTs in replication tasks, we enforce serial replications with
a distributed lock which can be easily implemented with
a cloud database (e.g., Amazon DynamoDB [9]). In Algo-
tithm 2, when there is an ongoing replication task, we keep
track of the ETag of the latest version in sequential attempts.
ETag is essentially a platform-generated content hash of the
object [11]. When we release the lock when a replication task
finishes, we compare the pending ETag with the most recently
replicated ETag. If they mismatch, we invoke the orchestrator
again in case the latest version is not replicated yet.

Optimistic replication with validation. To avoid replicating
inconsistent parts, each replicator checks that ETag matches
the one provided by the orchestrator. If a mismatch is found,
the ongoing replication task is aborted. We expect a retry
will go through unless an extremely large object is updated
frequently which should be rare. In that case, the object must
be locked in order to let AReplica replicate it successfully.

5.3 Dynamic Replication Plan Generation

With the workflow of AReplica explained, we next show how
the replication plan is decided in AReplica. To decide where
to run the replication task and how many parallel functions
should be invoked, a performance model that predicts the
replication time of a plan is necessary.

The cloud platform fully owns the cloud notification stage,
and AReplica takes over the replication task after receiving the
notification. If the user-defined SLO for replicating an object
is SLO, and it takes T,, to deliver the notification after an object
is created, our goal is to provide a bound of the aggregate
time of the remaining three stages Tyep, wWhich should be
within SLO — T,,. Note that if a user defines an unreasonably
tight SLO, the SLO might have been already violated when
AReplica receives the notification.
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There are two requirements for designing the performance
model of AReplica. First, although common objects can
be replicated with a single cloud function, replicating rel-
atively large objects requires distributed replication with mul-
tiple cloud functions to avoid timeouts and meet the SLOs.
Therefore, the performance model of AReplica must be two-
fold, covering both cases. Second, as previous work points
out [68, 88], to meet a target SLO when using cloud func-
tions, the performance model must be distribution-aware so
that performance variability is taken into account.

Single replicator function. We decompose the replication
time T,;, into two parts: the time to start the replicator func-
tion Tfype and the time to download and upload the object
Tiransfer- Trep s represented as:

Trep = Tfunc + Ttransfer

When an object is small enough, the orchestrator that re-
ceives the notification can handle the replication locally. In
that case, Trync is zero. When another replicator function is
necessary, the replicator becomes ready after the API invo-
cation time I and a delay of D. These two parameters are
related to where the function is run. Therefore, Tz, can be
expressed as:

size(obj) < threshold

T _Jo
fune = I(loc) + D(loc) otherwise

On the other hand, T;y4user is positively correlated to the
object size. We notice that an overhead of S exists for the
cloud clients to become ready for data transfer. We note the
time of transferring a unit of data (chunk size c) as C. The
total time of transferring the object is C times the number of
chunks in the object. T;,gnsfer then becomes:

Tiransfer = S(src, dst, loc) + C(src, dst, loc) X [size(obj)/c]

Parallel replicator functions. We next extend our model to
reflect the performance of distributed replication. It is harder
to estimate the replication time when multiple functions are
involved. However, the model is allowed to overestimate the
replication time to some extent as long as we can find an
SLO-compliant replication plan. We still decompose T, to
Trune and Tipansfer for simplicity.

When starting n functions, we assume that each asynchro-
nous invocation is pipelined, so we do not need to add up
the delay D for each function. However, the scheduling be-
havior of each cloud platform is an additional factor that we
need to consider. When a large number of function calls are
received, it can take a few seconds for a cloud platform’s
scheduler to add new instances. For example, the scheduler
of Google Cloud Run Functions runs every five seconds [7].
We observe a similar behavior on Azure functions. We denote
the scheduling postponement as P, Tg,;,. then becomes:

Ttune = I(loc) X n+ D(loc) + P(loc)
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Algorithm 3 Dynamic replication strategy planning

p: percentile of distribution
Ny the maximum parallelism

1: function GENERATE_PLAN(0bj, SLOz, p)

2 SLOyep < SLOgze - (now - obj.timestamp)

3 best_time, best_plan « oo, NULL

4 fori=1,2, ...ny. do

5: for loc € {src,dst} do

6: time « T,.,(i, loc, obj, p)

7 if time < best_time then

8 best_time, best_plan « time, (i, loc)

9 if best_time < SLO,.,, then

10: return best_plan

11: return best_plan

For Tiransfer, the exact formulation should be the maxi-
mum execution time across all the function instances. How-
ever, how many chunks each function replicates is uncertain
under part-granularity scheduling. We assume that the slow-
est function processes fewer chunks than average because it
takes a longer time to process a chunk. The time consumed
per chunk is also different for distributed replication because
it also involves cloud database accesses. Therefore, a practical
upper bound of Ty gns fer 18:

Tiransfer = max {S(sre, dst, loc)+C’ (src, dst, loc)><{M
1<i<n cXn

The performance model above can predict the replication
time for any object size, and we intentionally make the pa-
rameters easy and affordable to profile.

Awareness of distribution. In our formulation, the profiler
is responsible for identifying the parameters I, D, P, S, C,
and C’. Because we notice certain clouds and regions have
high performance variability as shown in Figure 9, we need
to describe these parameters as distributions instead of a triv-
ial values. The profiler needs to collect enough samples to
generate a representative distribution.

For simplicity, unless we clearly notice an unusually long
tail, we fit the samples to a normal distribution. Because our
performance model is mostly weighted sums of the param-
eters, the results also follow a normal distribution. We can
easily calculate the desired percentile with statistics libraries.
One exception i8S Tiansfer for multiple replicator functions
because it is the maximum across all function instances. For
most values of n, we use Monte Carlo methods to obtain a dis-
tribution of Tyyansfer- Rather than running for each planning
request, the simulation is an on-demand process triggered in
two scenarios: first, to bootstrap the model for a given replica-
tion path and parameters, and second, when the system detects
a significant, persistent deviation between its predictions and
actual task performance. However, for large n, resampling
will be too time-consuming. Instead, based on the extreme
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Op: COPY
Src: Object-1
Dst: Object-2
Etag: xxxxx

COPY

Object-1

Cloud Region 1

Cloud Region 2
Figure 15. Propagating COPY operation.

value theory, we can use Gumbel distribution to represent the
maximum of n i.i.d. random variables for large n, which is
significantly faster than Monte Carlo methods.

SLO-compliant plan generation. With the performance
model established, we can compare the estimated replica-
tion time of different plans. The goal of AReplica’s strategy
planner is to generate an SLO-compliant replication plan with
the lowest cost rather than the fastest one.

However, it is unnecessary to calculate the exact cost of
each plan. When more function instances are invoked, addi-
tional API calls are triggered. It also incurs extra performance
overhead, which increases the aggregate function execution
time. Therefore, in Alogithm 3, we start with the single-
function strategy and iterate through different parallelisms
exponentially. For each level of parallelism, we compare the
plan of utilizing functions at the source region with the plan
of utilizing functions at the destination region. As soon as
we identify an SLO-compliant plan, we return it immediately
without evaluating all the remaining possible plans. If there is
no SLO-compliant plan, the fastest plan is returned.

The algorithm takes a user-defined percentile (e.g., p90
or p99) as an input. The performance model will output the
replication time ¢t where P(T < t) > p. Because we use
Monte Carlo methods to generate the distribution for parallel
functions, we restrict the resampling time to avoid violating
the SLO due to slow plan generation.

5.4 Opportunistic Replication Reduction

We further optimize the cost of cross-cloud/region object
replication where data egress cost dominates after unneces-
sary compute cost is opted out by replacing VMs with cloud
functions. Our principle for data egress cost reduction is to
avoid unnecessary data replication as much as possible.
There are two key insights that we can leverage to avoid
unnecessary replication. First, object storage is unaware of
how a new object is generated because it only provides a
simple PUT write interface. For example, when text content
is stored in object storage, copy/move/concatenation/append
from existing files are common operations. And when object
storage is used as a substitute for block storage [55, 78], a
partial update can also occur. It does not create a difference
cost-wise when the data is only stored in one cloud region.
However, when cross-cloud/region replication is required, it
forces the replication system to copy the entire object instead

Algorithm 4 SL.O-bounded batching

1: function BATCH(obj, SLO,;)

2 deadline «— obj.timestamp + SLO,2,

3 if now + T,.,(obj) + € > deadline then

4 if obj.etag € pending_etags[obj.key] then

5: pending_etags[obj.key].clear()

6 objnew « latest_object_metadata(obj.key)

7 schedule_replicate(objpeqy)

8 else

9: pending_etags[obj.key].push(obj.etag)

10: delay(BATCH(obj, SLO,3,), deadline - T, (obj))

of just the changes. Therefore, we argue that additional hints
from the cloud users help reduce the cost for such scenarios.

Second, it is unnecessary to replicate every single version
of an object. For example, if the SLO is 60 seconds and an
object is updated once per second, we can buffer and merge
the updates to replicate the object once or twice a minute,
while still meeting the SLO. By doing so, the cost can be
reduced in proportion to the update frequency.

Changelog propagation. Instead of replicating the full con-
tent of the new object, we propagate the changelog to the
destination to opportunistically reduce the cross-cloud/region
transmission. A changelog is generated at the user program
as a hint to AReplica, which can be created by the user or
automated by program analysis. In Figure 15, we show how
a COPY operation is mirrored from Region 1 to Region 2.
When a new object version is created, AReplica will find
a corresponding COPY changelog in the cloud database.
AReplica propagates only the changelog to Region 2, where
the changelog is applied locally.

A caveat here is that AReplica may already replicate a
newer version of the source object to Region 2. So the
changelog must include the ETag of the source object. Before
a changelog can be applied, AReplica checks if the current
ETag matches the requested ETag to ensure correctness.

SLO-bounded batching. When the target SLO is relatively
loose for certain object sizes, it creates extra space for cost
optimization. We do not need to replicate an object immedi-
ately. Instead, we take the opportunity to delay the replication
towards its deadline so multiple updates can be aggregated
into one. As Algorithm 4 depicts, a delayed replication task
always replicates the newest version. Other replication tasks
which find their versions or newer versions have already been
replicated can just quit without taking any further actions.

6 Discussion

Fault tolerance and consistency guarantee. A cloud func-
tion can timeout or fail mid-execution. AReplica relies
on the auto-retry mechanism provided by the cloud plat-
forms [19, 24, 44] on unexpected faults. AReplica can retry
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Table 1. Replication delay and cost from AWS us-east-1

Cloud AWS Azure GCP
Region ca-central-1 | eu-west-1 | ap-northeast-1 | eastus uksouth southeastasia | us-eastl europe-west6 | asia-northeastl
AReplica | 1.5 I.5 1.6 1.3 2.0 2.5 1.4 22 33
Delay (second) Skyplane | 76.2 84.7 90.2 134.3 146.5 149.4 109.4 126.5 115.2
S3RTC | 21.3 24.1 24.5 N/A N/A N/A N/A N/A N/A
IMB A -92.79% -93.62% -93.60% -99.00% | -98.66% | -98.32% -98.76% | -98.26% -97.09%
AReplica | 0.3 0.3 0.3 0.9 1.0 1.0 1.0 1.0 I.1
Cost (1074$) Skyplane | 541.6 541.6 586.9 768.9 1104.9 1152.9 771.9 1238.1 845.2
S3RTC | 0.4 0.4 0.4 N/A N/A N/A N/A N/A N/A
A -32.25% 31.43% 28.55% -99.88% | -99.91% | -99.91% -99.88% | -99.92% -99.87%
AReplica | 2.7 3.8 5.0 22 3.6 7.5 3.4 6.8 8.6
Delay (second) Skyplane | 82.8 88.7 92.5 1394 151.8 159.2 116.2 127.8 131.0
S3RTC 15.3 16.1 17.1 N/A N/A N/A N/A N/A N/A
128MB A -82.52% 76.49 % 70.77 % -98.39% | -97.61% | -95.28% -97.08% | -94.68 % -93.47 %
AReplica | 26.8 27.6 28.1 1135 114.5 116.6 1143 116.1 117.0
Cost (10-4$) Skyplane | 567.4 567.3 612.6 881.0 1217.0 1521.1 11434 1350.6 1289.9
) S3RTC | 443 44.3 443 N/A N/A N/A N/A N/A N/A
A -39.59% -37.72% -36.59% -87.12% | -90.59% | -92.33% -90.00% | -91.40% -90.93 %
AReplica | 3.6 6.5 10.3 3.4 4.3 13.5 3.8 7.2 10.3
Delay (second) Skyplane | 82.9 91.6 95.2 141.8 1533 165.9 1172 131.6 1453
” S3RTC | 24.6 252 26.6 N/A N/A N/A N/A N/A N/A
IGB A -85.37% -74.28 % -61.11% -97.63% | -97.21% | -91.89% -96.79% | -94.52% -92.91%
AReplica | 212.4 218.9 222.9 907.7 913.9 929.8 912.4 924.5 934.2
Cost (10-4$) Skyplane | 749.0 748.4 793.3 1927.5 2008.2 2312.3 1937.0 2144.1 2083.5
S3RTC | 3539 353.6 3534 N/A N/A N/A N/A N/A N/A
A -39.99% -38.08% 36.92% -52.90% | -54.49% | -59.79% -52.90% | -56.88% -55.16%

without extra error handling because object storage’s PUT
API is idempotent. To avoid repetitively retrying on perma-
nent failures, the failed event is moved to a dead-letter queue
after exceeding the maximum retries.

AReplica provides eventual consistency as the existing
replication systems [35, 37, 38, 60], which can support use
cases like disaster recovery and content delivery. While
AReplica is non-intrusive to user applications, achieving
stronger consistency will require customizd APIs.

Resource limitations and overlay networks. Although
cloud platforms can virtually provide unlimited resources,
a user account usually has a set of static limits that are ad-
justable (e.g., the number of concurrent function instances).
By default, AWS and Azure provide 1,000 concurrent in-
stances [20, 43], which are enough for common use cases. A
user can also request a quota increase if necessary.

An overlay network can accelerate cross-cloud/region repli-
cation at extra cost, when there is a certain resource limit as
in Skyplane. It is orthogonal to AReplica and can become
useful when a user’s target throughput is extremely high and
the resource limit cannot be lifted further.

Emerging Use Cases. Beyond traditional applications like
disaster recovery, fast cross-cloud/region replication has the
potential to play a role for emerging data-intensive workloads
that rely on object storage. A prominent example is the global
distribution of machine learning models and other Al arti-
facts [58, 75]. As organizations deploy models across multiple
regions and clouds to serve a global user base, the ability to
rapidly and cost-effectively replicate massive model files (of-
ten tens to hundreds of gigabytes) is paramount for minimiz-
ing deployment times and ensuring consistent performance.
Similarly, geo-distributed training workflows [76] depend on
the efficient synchronization of large datasets across sites. The

on-demand, highly parallel nature of AReplica is particularly
well-suited for these bursty, large-scale data movement tasks,
addressing the communication bottlenecks in the modern
AI/ML lifecycle.

7 Implementation

We implement a system prototype of AReplica with ~5200
lines of code in Python. The offline performance profiler
is a set of test cases that run a few times for each distinct
configuration. The replication strategy planner and replication
engine are two individual code modules packaged with the
SDKs of cloud platforms.

The prototype supports data replication between any public
regions of AWS, Azure, and GCP. We deploy the replication
strategy planner and replication engine as cloud functions to
AWS Lambda [13], Azure Functions [18], and Google Cloud
Run Functions [28], respectively. Any intermediate states of a
replication task are stored in Amazon DynamoDB [8], Azure
Cosmos DB [16], and Google Firestore [31], which are all
serverless databases on a pay-as-you-go basis. We rely on
cloud-managed serverless workflows to realize SLO-bounded
batching [14, 32, 42].

8 Evaluation

In this section, we evaluate our prototype of AReplica from the
following aspects: i) replication delay and cost against both
open-source and cloud proprietary baselines (§8.1); (ii) effec-
tiveness of individual techniques (§8.2); (iii) performance on
a real-world object storage trace (§8.3).

Setup. We conduct our experiments on AWS, Azure, and
GCP. We manually configure cloud functions so that they
achieve the best performance at the lowest cost. On AWS,
the memory sizes of AWS Lambda are between 512MB and
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Table 2. Replication delay and cost from Azure eastus

Cloud AWS Azure GCP
Region us-east-1 | eu-west-1 | ap-northeast-1 | westus2 uksouth southeastasia | us-eastl europe-west6 | asia-northeastl
AReplica | 0.1 0.7 0.9 0.8 0.9 1.7 0.7 1.4 22
Delay (second) Skyplane | 113.2 114.1 119.6 131.6 142.2 147.9 136.3 149.7 142.9
AZRep | N/A N/A N/A 61.3 61.3 64.0 N/A N/A N/A
IMB A -99.93% | -99.37% -99.25% -98.77 % -98.48% | -97.28% -99.51% | -99.04% -98.49%
AReplica | 1.0 I.1 1.2 0.4 0.8 0.8 1.0 1.0 1.2
Cost (1074$) Skyplane | 768.9 827.6 1174.2 768.2 1104.5 1152.5 1030.9 1238.0 11774
AZRep | N/A N/A N/A 0.2 0.5 0.5 N/A N/A N/A
A -99.87% | -99.87% -99.90% +97.43% | +44.64% | +46.71% -99.90% | -99.92% -99.90%
AReplica | 3.7 6.1 6.0 8.2 12.1 15.8 6.6 14.1 16.1
Delay (second) Skyplane | 115.3 122.4 1248 140.6 147.9 150.1 1383 150.6 149.5
AZRep | N/A N/A N/A 61.2 60.8 70.3 N/A N/A N/A
128MB A -96.80% | -95.00% -95.23% -86.55% -80.02% | -77.56% -95.24% | -90.63% -89.25%
AReplica | 110.9 116.1 112.0 27.3 64.7 78.5 113.9 121.5 124.0
Cost (10-4$) Skyplane | 1133.7 11924 1283.0 1049.4 1167.0 1215.0 1139.6 1346.8 1286.2
) AZRep | N/A N/A N/A 254 63.0 63.0 N/A N/A N/A
A -90.21% | -90.26% -91.27% +7.38% +2.66 % +24.58 % -90.01% | -90.98 % -90.36 %
AReplica | 4.8 3.8 8.4 17.6 16.8 24.3 10.0 15.8 19.8
Delay (second) Skyplane | 123.5 123.9 129.3 140.6 152.5 174.9 145.8 175.5 170.9
” AZRep | N/A N/A N/A 62.4 62.8 75.4 N/A N/A N/A
1GB A -96.14% | -96.90% -93.47% -71.78 % -73.24% | -67.78% -93.14% | -91.02% -88.39%
AReplica | 883.5 885.1 889.9 301.1 612.4 637.6 956.5 1031.0 1042.1
Cost (10-4$) Skyplane | 1900.8 1959.4 2049.7 1227.2 1607.9 1976.1 1906.7 2476.4 2053.2
AZRep | N/A N/A N/A 203.2 503.9 504.0 N/A N/A N/A
A -53.52% | -54.83% -56.59 % +48.23% | +21.54% | +26.51% -49.84% | -58.37% -49.25%

1GB. The memory sizes of Azure Functions are configured
to 2048MB, which is the minimum. Google Cloud Run Func-
tions is configured to 1024MB memory and 1-2 vCPUs.

Baselines. We compare AReplica with the v0.3.2 release of
Skyplane [40, 60, 81] and the proprietary replication services
AWS S3 Replication Time Control (S3 RTC) [34] and Azure
object replication (AZ Rep) [35]. Skyplane allows object
replication between public regions of major clouds. S3 RTC
supports replication between two AWS buckets with a 15-
minute SLO, while Azure object replication has no SLO
guarantee. As a prerequisite for using AWS S3 RTC and
Azure object replication, object versioning is enabled.

Metrics. The main metrics that we focus on are replication
delay and cost. For a fair comparison of the systems, we
define the replication delay as the time from completion of
a PUT request and a successful retrieval of the version or
its subsequent versions in the destination region. The VM
deprovisioning time is excluded for Skyplane. The cost is
comprehensively estimated based on the listed prices of the
cloud products and metered usage from the recorded logs.

8.1 Replication Delay and Cost

We first compare the replication delay and cost of AReplica
under different object sizes. Three representative object sizes
(IMB, 128MB, and 1GB) are chosen for comparison. The
sizes of ~80% objects are equal to or below 1MB in the
IBM COS trace. For a 128MB object, distributed replication
usually outperforms a single replicator function. And over
99.99% of the objects are below 1GB in the IBM COS trace,
which covers the vast majority of the objects. To show that
AReplica can also be used as an efficient bulk replication tool,
we also compare the replication time and cost with Skyplane
at 100GB. For Skyplane, we use one VM per region by default

and eight VMs per region for the 100GB experiment. For
objects smaller than a few gigabytes, provisioning additional
VMs fails to improve performance. Moreover, this approach
unnecessarily increases costs, while the significant variability
in VM startup times can paradoxically extend the end-to-end
replication delay. To show the best performance that AReplica
can achieve, the SLO is set to zero for these experiments so
that AReplica always chooses the fastest replication strategy.

AWS results. Table 1 shows the replication delay and cost
of AReplica from AWS us-east-1 to the other nine regions.
AReplica outperforms the best baseline in every experiment
and reduces the replication delay by 61%-99%. The replica-
tion delay of S3 RTC is between 15 and 26 seconds, while
it takes Skyplane at least 76 seconds to replicate an object.
AReplica is able to keep a single-digit replication delay for
most of the experiments, except for some Asian regions,
which have slower links. The replication delay to Asian re-
gions can be further optimized with finer-granularity manual
tuning of the chunk size and level of parallelism. AReplica
also reduces the cost by 28.5%-99.9%. Using AReplica with
underlying Lambda and DynamoDB is more cost-effective
than S3 RTC, providing 28.5%-39.9% cost savings.

Azure results. Table 2 shows the replication delay and cost of
AReplica from Azure eastus to the other nine regions. Overall,
the replication delay is reduced by 67%-99%. Azure object
replication consistently exhibits >60 seconds delay. Skyplane
on Azure is also slower because it takes longer to provision
Azure VMs. AReplica on Azure is not as fast as on AWS
because Azure functions’s cross-region links are relatively
unstable when multiple functions are invoked. AReplica is
more expensive than Azure object replication which is free of
charge while providing no SLO guarantee.
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Table 3. Replication delay and cost from GCP us-eastl
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Cloud AWS Azure GCP
Region us-east-1 | eu-west-1 | ap-northeast-1 | eastus uksouth southeastasia | us-westl | europe-west6 | asia-northeastl
AReplica | 02 70 23 1.9 25 38 1.7 27 39
Delay (second) | Skyplane | 100.0 105.8 112.6 138.1 149.3 160.1 106.8 119.3 125.5
IMB A 9981% | 99.04% | -97.99% 98.62% | 98.34% | -97.61% 98.41% | -97.13% 96.88%
AReplica | 1.5 16 18 16 8 21 0.7 12 5
Cost (107$) [ Skyplane | 516.2 5455 9215 10312 11112 11592 5182 12436 11833
A 99.71% | 99.70% | -99.80% 99.84% | 99.84% | -99.81% 99.87% | -99.91% 99.87%
AReplica | 4.2 6.2 95 65 113 144 6.0 6.1 81
Delay (second) [ Skyplane | 102.6 1125 1202 140.9 1482 725 113.0 1213 1283
128MB A 9590% | 94.49% | -92.08% 9538% | 92.06% | -91.66% 94.65% | -95.00% 93.70%
AReplica | 153.1 1554 156.7 1594 168.7 180.1 325 781 1174
Cost (1074$) | Skyplane | 665.9 930.6 1330.2 1180.4 1260.5 1567.5 5439 1306.6 1283.4
A T7.01% | -84.15% | -88.22% 86.49% | -86.61% | -88.51% 94.02% | -94.02% 290.85%
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Figure 16. Replication time and cost of a 100GB object.

Google Cloud Platform results. Table 3 shows the replica-
tion delay and cost of AReplica from GCP us-east1 to the other
nine regions. Overall, the replication delay is reduced by 73%-
99% compared to Skyplane. Like Azure Functions, Google
Cloud Run Functions’s link speeds are unstable with paral-
lelism, causing relatively high replication delay on 128MB
and 1GB objects. Despite providing 38.5%-99.9% cost sav-
ings, using AReplica on GCP is generally less cost-effective
because Firestore and Cloud Run are more expensive.

We observe that AReplica assigns a single function instance
for IMB objects, 4-8 for 128MB, and 32-64 for 1GB in most
cases. AReplica consistently chooses to run functions on AWS
when possible, as its performance model determines that AWS
Lambda generally offers the lowest replication latency.

Bulk replication results. Figure 16 shows the replication
time and cost of AReplica and Skyplane for replicating a
100GB object. The notification delay is not included in these
experiments. Even for replicating a 100GB object, Skyplane
still suffers from the non-negligible VM provisioning time.

replicate between the reported region pairs.

8.2 Ablation Study

Effectiveness of decentralized part-granularity scheduling.
In Figure 17, we show the distributions of execution time and
number of replicated chunks among function instances when
replicating a 1GB object from Azure eastus to GCP asia-
northeast! with 32 function instances. In contrast to fair task
dispatching which distributes parts equally among function
instances, decentralized part-granularity scheduling allows
the function instances to finish running at approximately the
same time, which in turn significantly reduces the end-to-end
replication time. Some slow instances never replicate a chunk,
and the fastest instances replicate six chunks.

Accuracy of the performance model. In Figure 18-19, we
show the actual replication times and the distributions gener-
ated by AReplica’s performance model for replicating a 1GB
object. We configure AReplica to run functions at the source
region for 100 times. The links between AWS us-east-1 and
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Figure 19. Azure eastus to GCP asia-northeast1 replication
time.

Azure eastus are relatively fast and stable, while those be-
tween Azure eastus and GCP asia-northeast] are slow and
fluctuating. We further evaluate our model across six region
pairs with 32 function instances, comparing the predicted
mean and standard deviation of the replication time against
the actual measured results as shown in Table 4. Although our
performance model tends to overestimate the replication time
in general, it reflects the relative performance of different
strategies. Nevertheless, our performance model also captures
the variance differences across various cases.

Effectiveness of dynamic region selection. We conduct an
experiment to replicate a 128MB object between each pair of
regions with a relaxed SLO which lets AReplica to use a single
function instance. And we discover there are certain regions
which possess very distinct characteristics. In Figure 20, we
show the replication time from Azure southeastasia and from
GCP europe-west6. Neither statically using the source region
nor the destination region can provide optimal performance.
Dynamically selecting where to execute the functions can
significantly reduce the replication time.

Effectiveness of changelog propagation. In Figure 21, we
show the time and cost of COPY operation. Changelog prop-
agation does not improve the replication time significantly
because the experiments are conducted between us-east-1
and us-east-2, and the difference between inter-region and
intra-region bandwidths is minimal. However, it dramatically
reduces the cost by completely avoiding unnecessary cross-
cloud/region object replication.
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Figure 20. Effectiveness of dynamic replication strategy.

Effectiveness of SLO-bounded batching. In Figure 22, we
show the effectiveness of SLO-bounded batching. We repli-
cate a 100 MB object with different update frequencies and
set the SLO to 30 seconds. SLO-bounded batching is able to
maintain the SLO with very few violations, and the cost is
almost constant as the update frequency changes. The cost
increases significantly if the mechanism is absent. It stops
increasing beyond 50 times per minute because it reaches the
maximum replication frequency AReplica can provide.

8.3 Real-World Object Storage Trace

We evaluate AReplica’s replication delay using a busy, one-
hour segment of the week-long IBM COS trace [33]. After
removing non-replicating GET and HEAD operations, the
trace contains ~0.99 million PUT and DELETE requests. To
compare AReplica with S3 RTC, we replicate objects from
AWS us-east-1 to us-east-2, replaying the trace at a high rate
using 32 m5.8xlarge EC2 instances, each running 16 parallel
clients. Skyplane is omitted as it can not handle this replica-
tion rate. As shown in Figure 23, S3 RTC’s replication time
is typically around 20 seconds, but its p99.99 delay exceeds
30 seconds during traffic bursts. In contrast, AReplica ’s elas-
ticity and adaptivity keeps the p99.99 replication time under
10 seconds for the entire period, despite dynamic bursts and
varying object sizes. AReplica achieves this by dynamically
scaling to hundreds of concurrent function instances to absorb
the traffic bursts.

9 Related Work

WAN replication. The key challenges of replicating data over
a wide-area network are its limited bandwidth, unstable links,
and high cost. Peer-to-peer protocol is a classic approach to
improve performance and robustness by allowing a client
to download a file from multiple peers [52, 54, 64]. With
more IT infrastructures consolidated into datacenters, many
existing efforts focus on replication between datacenters [58,
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65, 75, 82, 87]. Although the nodes may directly transfer
data to each other in a distributed manner, many inter-DC
replication systems [58, 65, 82, 87] possess a centralized view
of available resources across the datacenters and utilize them
efficiently towards different performance/cost goals.

The most related work includes SPANStore [83] and Sky-
plane [60, 81]. They can be deployed on demand without
native support from cloud providers as AReplica, and allow
fast and cost-effective cross-cloud/region storage/replication
by taking the data egress pricing model of cloud platforms
into account in their schedulers. Unlike existing Inter-DC
or cross-cloud/region storage/replication systems, AReplica
is highly elastic without assuming a resource limit because
serverless computing can span many cloud functions instanta-
neously. Macaron [70] and SkyStore [67] take an alternative
approach that caches objects for acceleration and cost saving,
which is orthogonal to AReplica.

There are also commercial solutions that also address
multi-cloud data management. Major clouds provide man-
aged services that support object replication across re-
gions [26, 35, 37, 38]. Rubrik [36], an independent solution
provider, offers a comprehensive, VM-based cluster manage-
ment platform which focuses on protecting data via periodic
snapshots, whereas AReplica is a fully serverless solution
designed for real-time replication of individual objects to re-
duce latency and cost. Exostellar [27] focuses on cloud cost
optimization without detailing their replication methods.

Serverless applications. As a new computing paradigm,
serverless computing brings easy deployment, high elasticity,
and potential cost savings. Many traditional serverful appli-
cations are migrating to serverless platforms, including data
analytics[61, 71, 86], video processing [49, 59], and machine
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learning [50, 77, 79, 85]. AReplica is the first attempt to apply
serverless computing to cross-cloud/region data replication.
There is also a large body of prior work that characterizes
the performance of serverless workloads [61, 68, 74, 86, 88].
Based on these observations, different approaches including
parallel execution [51, 66] and configuration optimization[47,
61, 68, 80, 86, 88, 89] are applied to improve the performance
and reduce the cost of serverless applications. This paper
presents the first comprehensive characterization of serverless
cross-cloud/region data replication, critically analyzing its
performance dynamics to inform the design of AReplica.

10 Conclusion

This paper presents AReplica, a serverless platform-
independent object replication system across clouds/regions.
AReplica proactively decides the replication plan based on
a distribution-aware performance model and applies decen-
tralized part-granularity scheduling during runtime to react
to performance variability. It avoids unnecessary costs by
adopting changelog propagation and SLO-bounded batching.
We implement and evaluate a AReplica prototype on three
major cloud platforms and show that AReplica reduces the
replication delay by 61%-99% with a cost saving of up to
three orders of magnitude on common object sizes.
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