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ABSTRACT
RAID (Redundant Array of Independent Disks) has been widely

adopted for decades, as it provides enhanced throughput and redun-

dancy beyond what a single disk can oer. Today, enabled by fast

datacenter networks, accessing remote block devices with accept-

able overhead (i.e. disaggregated storage) becomes a reality (e.g.,

for serverless applications). Combining RAID with remote storage

can provide the same benets while creating better fault tolerance

and exibility than its monolithic counterparts. The key challenge

of disaggregated RAID is to handle extra network trac generated

by RAID, which can consume a vast amount of NIC bandwidth. We

present dRAID, a disaggregated RAID system that achieves near-

optimal read and write throughput. dRAID exploits peer-to-peer

disaggregated data access to reduce bandwidth consumption in both

normal and degraded states. It employs non-blocking multi-stage

writes to maximize inter-node parallelism, and applies pipelined

I/O processing to maximize inter-device parallelism. We introduce

bandwidth-aware reconstruction for better load balancing.We show

that dRAID provides up to 3× bandwidth improvement. The results

on a lightweight object store show that dRAID brings 1.5×-2.35×
throughput improvement on various workloads.

CCS CONCEPTS
• Hardware → External storage; • Information systems →
Storage management.
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1 INTRODUCTION
RAID [24, 50] is a canonical solution for building reliable, high-

performance storage systems. It enables users to build a virtual

block device of desired volume, bandwidth, and redundancy from

an array of commodity storage drives. It has been widely adopted

by industry since its invention in the past three decades. Due to its

high impact, RAID has been one of the central research topics in

storage systems [31, 36, 40, 44, 45, 60, 61].

Out of all RAID levels, parity-based RAID levels (e.g., RAID-5/6)

are particularly popular because they can tolerate device failures

with minimal space overhead. Today, RAID is a key feature in enter-

prise storage solutions [2, 3, 10, 13, 17]. Even though the landscape

of storage hardware has changed signicantly from hard disk drives

(HDDs) to solid state drives (SSDs), parity-based RAID is still cru-

cial for creating a virtual drive with better performance and higher

volume while achieving data durability [5, 8].

Recently, there is an ascending trend in datacenters to disaggre-

gate storage from compute [6, 7, 9, 33, 34, 42, 43, 48]. Disaggregated

storage enables infrastructure owners to scale compute and storage

resources independently and combine them exibly. In particular,

serverless computing [53] leverages such disaggregation to enable

resource elasticity and achieve high resource utilization. Storage

disaggregation becomes practical nowadays because datacenter net-

works have improved dramatically over the past decade in terms of

throughput and latency [16, 30, 52, 55].

By contrast, RAID is generally built on a monolithic architecture

and located on the same machine as its member drives [2, 10].

Although parity-based RAID can tolerate losing drives, there is a

risk that the entire array becomes unavailable if the storage server

with the RAID controller and the drives experiences an outage.
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Figure 1: Remote RAID architectures

Table 1: Comparison of 3 remote RAID architectures

Single-Machine Distributed dRAID

Fault tolerance Disk Disk & Server Disk & Server

Hot spare Dedicated Storage pool Storage pool

Scaling Pre-provisioning On demand On demand

Write overhead 1× 1-4× 1×
D-Read overhead 1× N× 1×

Unlike single-drive disaggregation which may allow sharing

among multiple tenants [43, 48], the common use case for RAID

is to satisfy the unmet demand of a single client for bandwidth or

volume that a single drive cannot provide.When the only client fails,

whether RAID is available becomes irrelevant. This means a user

can achieve the highest availability possible by placing the RAID

controller at the client side and use remote drives from dierent

storage servers to diverse the risk of a single point of failure.

Furthermore, RAID over disaggregated storage is easier and less

expensive to maintain. Conventionally, IT admins must keep at

least one hot spare for each RAID array and immediately replace

the failed disk in case of disk failures. Also, enough disks have to

be planned in advance on each storage array for future scaling. Al-

though parity-based RAID is space-ecient, maintaining it requires

over-provisioning and creates a heavy operational burden. With

disaggregated storage, IT admins can replace or add a disk from

a shared remote storage pool, which can signicantly reduce the

TCO (total cost of ownership) of the infrastructure.

RAID over disaggregated storage is not a free lunch. It puts extra

burden on the datacenter fabric. A major problem is partial parity

update of parity-based RAID [24]. A partial stripe write triggers

two reads followed by two writes in RAID-5, which results in 4×
bandwidth consumption in total. A solution to this problem is to

batch partial stripe writes and only submit full stripe writes [46].

This approach requires using non-volatile memory as the cache

layer and causes I/O amplication in the background.

Today, a server can only saturate the bandwidth of a few re-

mote SSDs even with a high-end 200Gbps NIC equipped. The NIC

bandwidth can be easily overwhelmed by the extra network trac

generated by partial stripe writes of parity-based RAID. Unlike the

inevitable extra I/Os on drives, our key insight is that the extra

trac in the network can be completely eliminated.

We present dRAID, a new approach to minimize the bandwidth

overhead of remote RAID by disaggregating part of the I/O handling

to storage nodes. We compare dierent designs of a remote RAID

system. Table 1 shows that dRAID can have all the benets of a

remote distributed RAID while keeping network overhead minimal.

To achieve that, we argue that a fundamental architecture change

is necessary to allow peer-to-peer data access in a storage array. As

Figure 1 illustrates, dRAID distinguishes itself from existing RAID

systems in terms of system architecture and network topology.

dRAID adopts a hybrid design and has a host-side controller

along with a server-side controller on each remote target. The host-

side controller serves two purposes. First, RAID does not allow

concurrent writes to the same stripe. The host-side controller only

admits one write I/O on a stripe at a time and keeps the others in a

queue. Second, a full stripe write incurs no remote read I/Os, and

thus it is optimal in terms of network and compute usage to simply

calculate the parity at the host side.

We propose three key techniques to maximize disaggregated

RAID performance for dRAID. First, we design a non-blockingmulti-

stage write mechanism to achieve maximum parallelism among

storage nodes. dRAID removes the dependency between parity

reduction and metadata arrival, which allows parity reduction to

proceed till the last step without waiting for the metadata to arrive.

Second, we introduce an I/O pipeline for each individual dRAID

operation, whichmaximizes parallelism across CPU, NIC andNVMe

SSD. Unlike NVMe-oF read and write which must process each I/O

sequentially, a dRAID operation consists of multiple network and

storage I/Os which can be overlapped and pipelined. Third, We

propose a bandwidth-aware load-balancing algorithm for RAID

reconstruction. The data-intensive RAID reconstruction can easily

overwhelm any single node. We construct a probabilistic reducer-

selection model based on available bandwidth to avoid overloading

the storage nodes that are already busy.

We note that distributed RAID and distributed parity calculation

are not new. Similar ideas have been attempted by researchers since

early nineties, such as Tertiary [57] and TickerTAIP [23]. Today,

distributed software RAID can be accelerated with new instruction

sets of CPUs [17] and high-speed networks [16] in datacenters. The

key dierence of dRAID is that it targets the bottleneck of NIC

bandwidth for the scenario of disaggregated storage in modern

datacenters. We propose three new techniques to build an optimal

data path that maximizes parallelism of modern NICs and NVMe

drives on the host and each remote storage server.

In summary, we make the following contributions.

• We design dRAID, a disaggregated RAID system that ex-

ploits inter-node and intra-node parallelism of disaggregated

storage to maximize throughput while keeping bandwidth

overhead minimal on both host and storage servers.
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Figure 2: RAID-5 read-modify-write

• We extend NVMe-oF protocol to support disaggregated read

and write operations (§4). We design algorithms to eciently

utilize network bandwidth (§5-§6).

• We implement a prototype of dRAID as a fully functional

user-space virtual block device atop SPDK [20] that supports

standard RAID-5 and RAID-6 (§8).

• We conduct an evaluation on the prototype and show that

dRAID scales linearly with the number of remote drives in

a RAID array and achieves near-optimal throughput (§9).

Overall, dRAID improves the aggregated throughput by up

to 3× for disaggregated storage arrays.

2 BACKGROUND AND MOTIVATION
2.1 RAID
Dierent RAID levels demonstrate unique characteristics in terms of

I/O performance, fault tolerance, and space overhead [24]. The most

used ones are RAID-0, RAID-1, RAID-5, RAID-6, and combinations

of these RAID levels. In practice, RAID-0 and RAID-1 are rarely

used alone. In this paper, we focus on parity-based RAID.

RAID-5 and RAID-6 are the most used parity-based RAID levels.

They achieve balance among throughput, redundancy, and space

overhead. RAID-5 can tolerate losing one drive with only 1/(n - 1)

space overhead (n is the number of drives). Theoretically, RAID-5

can achieve n times read throughput and n - 1 times write through-

put of a single drive in the most optimistic case.

In reality, RAID controllers can hardly achieve this throughput.

There are three dierent modes when writing data to parity-based

RAID. Read-modify-write and reconstruct write are way less e-

cient than full stripe write. We take an example of read-modify-

write mode in RAID-5 to explain the ineciency.

Read-modify-write occurs when a minority of data chunks in a

stripe need to be written (Figure 2). Note that XOR is an associative

operation [22], therefore calculating new parity does not require

every data chunk in a stripe. Applying the dierences between old

chunks and new chunks to the old parity chunk results in the new

parity chunk. Read-modify-write is common for partial stripe write.

It avoids reconstructing the entire stripe but it is still an expensive

operation, as up to two reads and two writes of the requested size

are triggered. It has been a subject of intensive research to avoid or

reduce read-modify-write in the data path [25, 26, 35, 47, 56].

Also, reconstructing a lost data chunk is an I/O intensive opera-

tion which can dramatically impact performance. For RAID-5, a lost

data chunk on the failed drive must be recovered by aggregating

all the other chunks in the same stripe with XOR. This creates n - 1

D1 D2 D3 D4 D5 P

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5 Disk 6

D1 D2 D4 D5 P

D3
Read Buffer

Reconstruct Buffer

Read1

XOR2

data
chunk
parity
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Figure 3: RAID-5 reconstruct read

times read I/Os of a normal-state read. Figure 3 illustrates how to

reconstruct a lost data chunk D3 from the drives that are still alive.

2.2 Disaggregated Storage
Networked storage has been widely used in datacenters. A Stor-

age Area Network (SAN) is a datacenter network that connects

block-level storage to servers [58]. SAN is a core product of cloud

providers [11, 12]. A SAN is a dedicated network connected through

specialized devices. On top of that, a special protocol named Internet

Small Computer Systems Interface (iSCSI) [1, 21] is used to trans-

fer data between servers and block devices. There are two major

drawbacks of SAN. First, a common SAN uses specialized hardware

which is both expensive and inexible. Second, the latency of SAN

is usually in millisecond scale, while direct-attached storage can

achieve sub-millisecond or even sub-microsecond latency.

Disaggregated storage is arising and addressing these problems.

NVMe-over-Fabrics (NVMe-oF) [4] is one of themost used solutions.

First, NVMe-oF is able to operate on common server NICs, so it

does not require a dedicated network for storage or any specialized

hardware. Second, transmission of small I/Os can be done in `s-scale

in high-speed datacenter networks. Prior work has demonstrated

the low latency of a disaggregated SSD [33, 34, 43, 48].

Indeed, ~90% of the NVMe-oF protocol is the same as NVMe

protocol, so using it does not require another translation layer.

2.3 Challenges and Opportunities of RAID over
Disaggregated Storage

With the support of NVMe-oF in Linux kernel, disaggregated stor-

age can be seamlessly integrated with Linux software RAID (a.k.a.,

LinuxMDdriver). However, throughput of RAID over disaggregated

storage is nowhere close to the theoretical bound [24], especially

for partial stripe writes and reconstruct reads.

Challenge: NIC bandwidth. Read-modify-write operation trig-

gers two writes for RAID-5 and three writes for RAID-6. It means

that the maximum write throughput is 50Gbps for RAID-5 and

33.3Gbps for RAID-6 with a high-end 100Gbps RDMA NIC. We

conduct a motivating experiment on a Dell Ent NVMe AGNMU U.2

1.6 TB solid-state drive. The write throughput of a single drive is

around 19Gbps. The implication is that the best throughput RAID

over disaggregated storage can achieve is 2.6× for RAID-5 and 1.8×
for RAID-6 versus a single drive no matter how many drives are

added to the array. This makes RAID over disaggregated storage

impractical because it cannot scale with the number of drives.

149



ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Junyi Shu, Ruidong Zhu, Yun Ma, Gang Huang, Hong Mei, Xuanzhe Liu, and Xin Jin

dRAID Host

dRAID Controller

dRAID Bdev

File System Application

User I/O 
Handling

Disaggregation
Orchestration

NVMe Device

Drive I/O
Handling

Partial Parity
Generation

Messaging &
Forwarding

Parity
Reduction

Host

Bdev

RDMA Connections

Figure 4: dRAID overview

Opportunity: direct peer access. We see an opportunity for dis-

aggregated storages to communicate with their peers without host

intervention. Conventionally, a local data transfer between two

drives must rely on a centralized program to move the data. We

argue that a disaggregated drive has both enough bandwidth and

its own controller to perform necessary data transfer, so there is

no reason for data accesses between remote drives to go through

the host and waste network bandwidth of the host.

3 dRAID OVERVIEW
dRAID is a new RAID architecture optimized for disaggregated

storage within a datacenter to achieve the best throughput and la-

tency possible. dRAID takes advantage of the unique opportunities

exposed by disaggregated storage to directly transfer data between

storage servers. Figure 4 shows the architecture overview of dRAID,

which consists of a centralized host component and an array of

underlying remote block devices.

dRAID host. A dRAID host is where the virtual RAID block device

is attached. dRAID host is a user-space software based on SPDK [20]

bdev layer that bypasses the kernel stack. dRAID host exposes a

standard block interface that allows applications to interact with

directly or through a lesystem. Unlike any existing RAID con-

trollers which carry the full responsibility, dRAID host is merely

a coordinator that orchestrates the disaggregation of RAID I/Os.

All decisions are made by the centralized controller, so that RAID

conguration can be hidden from the underlying remote storage

servers. In addition to disaggregation orchestration, The host-side

controller handles minimal data transfer and parity calculation only

in such cases that dRAID makes no gain from disaggregation. At

transport layer, dRAID host establishes an RDMA reliable connec-

tion (RC) with the server-side controller on each remote storage to

send command messages and handle data transfer.

dRAID block device (dRAID bdev). A dRAID bdev is a virtual

NVMe block device created by the server-side controller. The server-

side controller is a user-space program based on SPDK that controls

all the dRAID bdevs on the same storage server. A dRAID bdev is

backed by a physical NVMe drive or another virutualized block

device. The server-side controller enables a dRAID bdev to handle

more thanNVMe-oF read andwrite requests. dRAID extends NVMe-

oF protocol to instruct a dRAID bdev to (𝑖) calculate parity in a

distributed manner; (𝑖𝑖) forward partial parity to the correspond-

ing peer bdev; (𝑖𝑖𝑖) collect partial parities and complete the I/O

request. A major change that dRAID makes is that remote storages

NVMe-oF Command Capsule

Read
Write
+
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Reconstruction
Peer

offset
length

fwd-offset
fwd-length
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num-sge
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Address
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Other
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Figure 5: dRAID protocol

are connected through RDMA RC in pairs created by the server-

side controllers, so that data can be transferred between them. A

dRAID bdev is unaware of being in a RAID, and the dRAID protocol

includes all the information needed for the extended operations.

4 dRAID PROTOCOL
dRAID protocol is a compatible extension of NVMe-oF. We extend

three elds of the NVMe-oF protocol: opcode, command parameters,

and other command data. The additional opcodes and elds added

by dRAID are underlined in Figure 5.

Opcode.We add four operations to support disaggregated partial

stripe write and data reconstruction. PartialWrite, Parity, and Re-

construction are sent by dRAID host to instruct a dRAID bdev to

execute partial stripe write, parity reduction, and data reconstruc-

tion accordingly. Peer operation is used during partial stripe write

and data reconstruction for transmitting partial results to a peer.

Command parameters.We re-use the existing command parame-

ters and add extra elds to support the extended operations. subtype

supports dierent behaviors on handling the same opcode. fwd-

oset and fwd-length are required whenever data forwarding is

necessary because the forwarded segment may not share the same

oset and length as that to be written to the drive. next-dest denes

the destination of the data to be forwarded. And wait-num indicates

how many pieces of forwarded data must be received.

An alternative design is to broadcast the original I/O request to

all remote targets and let each target decides what to do. This design

will lead to a simpler protocol. All remote targets must run the same

controller logic as the host so additional input from the host is not

required. However, We decide not to go with this design, because

(𝑖) remote targets have to be aware that they are in a dRAID array

and provide full functionality of a centralized RAID controller; (𝑖𝑖)
experiments show that saving a few bytes in the request header

can merely improve the performance for a block storage.

Other command data. These extra elds are dedicated for RAID-6
because it requires a second parity Q which involves an additional

data forwarding call on partial stripe write and uses a dierent

parity generation function that requires additional parameters.

5 DISAGGREGATED PARTIAL STRIPE WRITE
Key idea. Our key idea is to decouple the data path and the control

path, so only the host is responsible for coordinating the workow

while allowing remote bdevs to directly share partial parities with

peers without host intervention in between.
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Our design depends on the mathematical property of a Galois

eld. Addition and subtraction in a Galois eld is equivalent to XOR.

XOR is both associative and commutative, so multiple XORs do not

need to be executed in a specic order. Each bdev is able to derive

a partial result independently, so no communication overhead is

incurred when parity is generated in a distributed manner.

Based on the property, we divide a partial stripe write into three

phases. Figure 6 examplies the workow of partial stripe write in

dRAID. The Broadcast phase is initiated by the host-side controller.

The host-side controller broadcasts PartialWrite to dRAID bdevs

that store the involved data chunks (denoted as 𝑏𝑑𝑒𝑣𝐷 ) and Parity

to the bdev with the parity chunk stored (denoted as 𝑏𝑑𝑒𝑣𝑃 ). Upon

receiving PartialWrite, 𝑏𝑑𝑒𝑣𝐷 reads/writes data from/to the drive

as instructed and calculates a partial parity. 𝑏𝑑𝑒𝑣𝑃 receives Parity,

and preloads necessary data for the Reduce phase.

During the Reduce phase,𝑏𝑑𝑒𝑣𝑃 waits for incoming partial results

from other bdevs. Partial results are aggregated to the nal parity

chunk by reduction. All of the expected partial results must be

received before the parity chunk is persisted. Upon completion, a

signal is sent to the host-side controller to indicate whether the I/O

is successful/failed/timed-out in the Callback phase.

5.1 Broadcast Phase Handling
Host-side Controller. The host-side controller decides write mode

of each I/O and orchestrates the workow accordingly. In read-

modify-write mode, subtype for PartialWrite and Parity is set to

RMW to indicate the write mode. fwd-oset and fwd-length must

be included because they may not be the same as oset and length

when only part of a data chunk is updated. next-dest is also required

because the destination of the partial parity must be provided. The

key parameter in Parity is wait-num, which lets 𝑏𝑑𝑒𝑣𝑃 know how

many partial results it should expect. On reconstruct write, subtype

is set dierently to instruct bdevs to skip loading the stored data.

PartialWrite. Algorithm 1 gives the pseudocode of how 𝑏𝑑𝑒𝑣𝐷
handles a PartialWrite command. 𝑏𝑑𝑒𝑣𝐷 rst fetches the data to be

written from the host (line 1). Themajor dierence of three subtypes

is how they construct the partial parity. A bdev either applies XOR

on the segments (line 3-4), concatenates the segments (line 6), or

simply reads from the drive (line 8) accordingly. Any updated data

blocks are written to the drive, and 𝑏𝑑𝑒𝑣𝑃 need to be signaled (line

Algorithm 1 Partial stripe write: HandleDataChunk(cmd)

- write_seg: data segment to be written

- parity_seg: data segment for partial parity

1: fetch remote data to𝑤𝑟𝑖𝑡𝑒_𝑠𝑒𝑔 if there is any

2: if 𝑠𝑢𝑏𝑡𝑦𝑝𝑒 = 𝑅𝑀𝑊 then
3: 𝑝𝑎𝑟𝑖𝑡𝑦_𝑠𝑒𝑔𝑜,𝑙 ← read from drive

4: 𝑝𝑎𝑟𝑖𝑡𝑦_𝑠𝑒𝑔𝑜,𝑙 ← 𝑥𝑜𝑟 (𝑝𝑎𝑟𝑖𝑡𝑦_𝑠𝑒𝑔𝑜,𝑙 ,𝑤𝑟𝑖𝑡𝑒_𝑠𝑒𝑔𝑜,𝑙 )
5: else if 𝑠𝑢𝑏𝑡𝑦𝑝𝑒 = 𝑅𝑊 _𝑊𝑅𝐼𝑇𝐸 then
6: 𝑝𝑎𝑟𝑖𝑡𝑦_𝑠𝑒𝑔𝑓 𝑜,𝑓 𝑙 ← read from drive +𝑤𝑟𝑖𝑡𝑒_𝑠𝑒𝑔𝑜,𝑙
7: else if 𝑠𝑢𝑏𝑡𝑦𝑝𝑒 = 𝑅𝑊 _𝑅𝐸𝐴𝐷 then
8: 𝑝𝑎𝑟𝑖𝑡𝑦_𝑠𝑒𝑔𝑓 𝑜,𝑓 𝑙 ← read from drive

9: if 𝑤𝑟𝑖𝑡𝑒_𝑠𝑒𝑔 ≠ ∅ then
10: write𝑤𝑟𝑖𝑡𝑒_𝑠𝑒𝑔 to drive

11: 𝑠𝑖𝑔𝑛𝑎𝑙 (𝑛𝑒𝑥𝑡_𝑑𝑒𝑠𝑡, 𝑎𝑑𝑑𝑟 (𝑝𝑎𝑟𝑖𝑡𝑦_𝑠𝑒𝑔), 𝑓 𝑜, 𝑓 𝑙)

10-11). This signal is yet another dRAID command, and Peer opcode

is used between bdevs. The parameters must include the address of

the partial parity and the corresponding oset and length.

Parity. If a stripe is in read-modify-write mode, the existing parity

chunk must be read in advance because the sum of the partial

results and the old value will be calculated later in the Reduce phase.

Except for that, 𝑏𝑑𝑒𝑣𝑃 does not do anything else and just waits

for signals from peers. Late arrival of Parity command adds more

complexity to the Reduce phase, which we explain in detail in §5.2.

5.2 Reduce Phase Handling
In the Reduce phase, the partial parities are collected and aggregated

into the new parity chunk. Algorithm 2 gives the pseudocode.𝑏𝑑𝑒𝑣𝑃
is the only actor in the Reduce phase

1
.

Upon signaled by a peer, 𝑏𝑑𝑒𝑣𝑃 fetches the partial parity from

𝑏𝑑𝑒𝑣𝐷 (line 8). If another partial parity with the same oset is al-

ready in the memory, then 𝑏𝑑𝑒𝑣𝑃 immediately reduces them by

applying XOR (line 14). Otherwise, 𝑏𝑑𝑒𝑣𝑃 simply stores the incom-

ing partial parity in the memory (line 16). oset is used as the unique

identier to group the partial parities because RAID does not allow

concurrent write on a stripe. 𝑏𝑑𝑒𝑣𝑃 keeps track of the number of

received partial parities (line 10). Once all the expected partial par-

ities are received and processed, the nal parity is written to the

drive and a success signal is sent to the host (line 19-20).

Late arrival of the Parity command. Attributed to the mathe-

matical property of parity, dRAID does not require partial parities

to arrive in any specic order. However, there is no barrier between

the Broadcast phase and the Reduce phase, so𝑏𝑑𝑒𝑣𝑃 may be signaled

by a peer before the Parity command arrives. The major issue with

a late Parity is that 𝑏𝑑𝑒𝑣𝑃 does not know how many partial parities

it should expect. 𝑏𝑑𝑒𝑣𝑃 cannot complete the Reduce phase before

Parity is received, otherwise it may cause data inconsistency.

Adding a barrier between the stages solves the problem, but

incurs an expensive synchronization of all the bdevs. Instead, We

only block the completion at the last step. 𝑏𝑑𝑒𝑣𝑃 keeps parity tenta-

tively in memory until (𝑖) the Parity command is received, (𝑖𝑖) all
the expected partial parities are processed. Partial parity reduction

is not blocked by a delayed Parity command because it does not

1
RAID-6 is dual parity, so there is another 𝑏𝑑𝑒𝑣𝑄 that handles the second parity.
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Algorithm 2 Partial stripe write: 𝑏𝑑𝑒𝑣𝑃 handling

- parity_map: oset⇒ parity buer

- wait_num_map: oset⇒ wait_num

- buer_in: buer for storing incoming data

1: function handle_host_parity(𝑐𝑚𝑑)

2: if 𝑠𝑢𝑏𝑡𝑦𝑝𝑒 = 𝑅𝑀𝑊 then
3: buer_in𝑓 𝑜,𝑓 𝑙 ← read from drive

4: reduce_new_buer(buer_in, fo)

5: 𝑤𝑎𝑖𝑡_𝑛𝑢𝑚_𝑚𝑎𝑝 [𝑓 𝑜]+=𝑤𝑎𝑖𝑡_𝑛𝑢𝑚

6: nish(fo)

7: function handle_peer_partial_parity(𝑐𝑚𝑑)

8: fetch remote data to buer_in

9: reduce_new_buer(buer_in, fo)

10: 𝑤𝑎𝑖𝑡_𝑛𝑢𝑚_𝑚𝑎𝑝 [𝑓 𝑜]--
11: nish(fo)

12: function reduce_new_buffer(buer_in, oset)

13: if 𝑝𝑎𝑟𝑖𝑡𝑦_𝑚𝑎𝑝.ℎ𝑎𝑠_𝑘𝑒𝑦 (oset) then
14: 𝑝𝑎𝑟𝑖𝑡𝑦_𝑚𝑎𝑝 [oset] ← 𝑥𝑜𝑟 (buer_in,

𝑝𝑎𝑟𝑖𝑡𝑦_𝑚𝑎𝑝 [oset])
15: else
16: 𝑝𝑎𝑟𝑖𝑡𝑦_𝑚𝑎𝑝 [oset] ← buer_in

17: function finish(oset)

18: if 𝑤𝑎𝑖𝑡_𝑛𝑢𝑚_𝑚𝑎𝑝 [oset] = 0 then
19: write 𝑝𝑎𝑟𝑖𝑡𝑦_𝑚𝑎𝑝 [oset] to drive

20: 𝑠𝑖𝑔𝑛𝑎𝑙 (ℎ𝑜𝑠𝑡, success)
21: 𝑝𝑎𝑟𝑖𝑡𝑦_𝑚𝑎𝑝.𝑑𝑒𝑙𝑒𝑡𝑒_𝑘𝑒𝑦 (oset)
22: 𝑤𝑎𝑖𝑡_𝑛𝑢𝑚_𝑚𝑎𝑝 [oset] ← 0

depend on any information from the Parity command. The Parity

command arrives before Peer commands for most of the time, so

further optimization on a delayed Parity command is an overkill.

5.3 Parallel I/O Pipeline
Although we limit each bdev to use only one core, there exists

an opportunity to accelerate PartialWrite by overlapping the I/Os.

Because modern NVMe drives allow more concurrent I/Os, queuing

I/Os as soon as possible help maximize its parallelism. In dRAID,

we observe that fetching remote data and reading the old data from

the drive can be done in parallel, while network and drive I/Os in

conventional NVMe-oF read and write are serial. Serial execution

also unnecessarily delays partial parity reduction because partial

parity is ready before the updated data are persisted in the drive.

As Figure 7 shows, we further optimize PartialWritewith pipeline

parallelism on 𝑏𝑑𝑒𝑣𝐷 . Network I/Os, drive I/Os and CPU-based

operations are parallelized to the greatest extent possible. Taking

read-modify-write as an example, when a drive read is completed

and CPU is notied, both drive write and partial parity generation

are ready to be executed next. The CPU starts generating the partial

parity and passing it to NIC while data is being written to the drive.

This change brings a consequence that dRAID needs to adapt to.

Previously, 𝑏𝑑𝑒𝑣𝐷 does not make a callback to the host because its

completion status is aggregated into the callback of 𝑏𝑑𝑒𝑣𝑃 . Because

the drive write is now handled concurrently with partial parity

forwarding, 𝑏𝑑𝑒𝑣𝐷 must make a callback to the host and report its

Poll CMD

Fetch
Remote

Read

Write

Partial
Parity

Callback CB 1 CB 2 CB 3

CMD 1 CMD 2 CMD 3

Fetch 1Fetch 2Fetch 3

Read 1 Read 2 Read 3

Write 1 Write 2 Write 3

Parity 1Parity 2Parity 3

Figure 7: Apply pipeline parallelism to PartialWrite

completion status. This callback only depends on completion of the

drive write, so that it can overlap with partial parity forwarding.

5.4 Failure Handling Strategies
Our failure model assumes either of the host, servers and drives

can fail transiently or for a longer duration. Transient failures,

such as timeouts caused by network jitter, are expected on a net-

worked system and should be handled gracefully. Prolonged failures

are handled with existing RAID mechanisms. Note that RAID is

not expected to support any transactional mechanisms in general.

Therefore, dRAID does not provide such support either.

Host failures. Host failures can cause the host-side controller to

stop functioning at anymoment during awrite process. A strawman

method for such a failure is to scan the entire array to nd all out-

of-sync blocks. Linux software RAID uses a bitmap to keep track

of which blocks are written to, so a full scan of the array can be

avoided. dRAID can just take the same approach.

Server-side failures. For a prolonged server-side failure, dRAID

sets the corresponding drive to a faulty state and enters degraded-

state as a common RAID. The dierence arises on transient failures.

RAID over standard NVMe-oF can retry immediately on a transient

failure, because NVMe-oF write is an idempotent operation. How-

ever, resending a dRAID operation blindly can result in concurrent

writes and trigger unexpected behaviors.

A rule of thumb for system design is not to optimize for rare cases.

dRAID uses explicit timeout and full stripe retry mechanism to

handle transient failures. dRAID sets an upper bound on execution

time for each operation. Same as a succeeded operation, once an

operation is failed or expired, an event is generated to explicitly

notify the host-side controller. The host-side controller only retries

after all operations are in one of the nal states to avoid concurrent

writes on the same stripe. We do not rely on the current state of

an expired operation when retrying. A full stripe write is always

triggered to prevent data inconsistency.

5.5 Resource Sharing
An enterprise storage server may have tens of drives [14], and

thus there is a chance that multiple dRAID bdevs are co-located on

the same storage server. Storage, compute and network are three
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types of resources that may be shared on a storage server. The

server-side controller on each storage server manages them with

corresponding strategies to improve the QoS of dRAID arrays.

Storage sharing. There is a well-known limitation of RAID that

it requires all member drives to be homogeneous. The overall per-

formance/size of a RAID array is limited by the wimpiest/smallest

drive. A straightforward way to achieve drive homogeneity is to

disallow drive sharing and always use drives with the same model

and condition. In order to build RAID on shared storage, the key

challenge is to partition a physical drive into smaller ones with

guaranteed performance [32], which is orthogonal to dRAID. Stor-

age virtualization usually requires drive proling in advance to

understand how a specic drive performs under dierent work-

load levels. A QoS controller needs to implement rate limiting at

run-time to ensure that a tenant does not exceed its I/O budget.

Compute sharing. Ideally, dedicating one CPU core in poll mode

per dRAID bdev avoids interference between the bdevs. However,

depending on CPU performance and workload characteristics, a

single CPU core for the server-side controller may be enough to pro-

cess I/Os of multiple bdevs. And using fewer cores when possible

help conserve energy in datacenters. Because only a small pro-

portion of end-to-end latency is on CPU, FCFS scheduling should

suce. To guarantee QoS when the a storage server has many

dRAID bdevs or a few dRAID bdevs are under heavy workload, the

sever-side controller needs to constantly monitor CPU usage and

dynamically adjust the number of cores in use.

Network sharing. A storage server usually has more than one

NIC. And we assume the total bandwidth is enough to saturate all

drives. Because excessive connections can lead to cache thrashing

and network I/O latency increases with the growth of load, our goal

is to minimize the number of connections created and balance the

trac among NICs. dRAID only creates one shared thread/connec-

tion per destination for all dRAID bdevs on the same server. New

connections are created on the least used NIC for load balancing.

When the workload on a dRAID bdev has substantially changed for

a long period, it may be worth migrating the bdev and replanning

the NIC placement of the dRAID bdevs.

6 DISAGGREGATED DATA
RECONSTRUCTION

Data reconstruction shares the same set of challenges as partial

stripe write. All techniques described in §5 also apply to data re-

construction. But there are also two key dierences between data

reconstruction and partial stripe write.

First, partial stripe write and full stripe write do not happen

at once for a stripe, but a read I/O may incur a mix of normal

reads and reconstructed reads. We must co-design normal read and

reconstructed read to avoid unnecessary storage and network I/Os.

Second, 𝑏𝑑𝑒𝑣𝑃 is the optimal choice for reducer in partial stripe

write because it is where the nal result will be persisted. Because

parity chunks are evenly distributed among all member drives in

RAID-5/RAID-6, the load is already well balanced by default. In

contrast, all bdevs play the same role when data reconstruction is

performed. It provides more design choices for reduction.

6.1 Degraded-State Read Handling
Key idea. Our key idea on handling simultaneous normal reads

and reconstruct reads on a stripe is to combine their drive read

I/Os while decoupling the returning data paths of normal reads and

reconstruct reads. This allows dRAID to minimize both the number

of drive I/Os and network trac.

Data reconstruction takes a dierent data path in dRAID to

minimize the usage of the host network bandwidth. A reducer is

designated to reconstruct the lost data chunk and return it to the

host (𝑏𝑑𝑒𝑣𝑃 in Figure 8). Passing the normal read data chunks to

the reducer unnecessarily wastes bandwidth between the bdevs

and memory space of the reducer. Therefore, dRAID lets each bdev

return the normal read data chunks directly to the host while ag-

gregating partial results at the reducer.

The complete workow. Figure 8 illustrates the complete work-

ow of degraded-state read. When a read I/O requests a lost data

chunk, dRAID broadcasts Reconstruction commands to all the avail-

able bdevs. If read is also requested on the corresponding bdev,

subtype is set to AlsoRead. Among all the available bdevs, a reducer

is randomly selected and all the other bdevs are notied.

Upon receiving the Reconstruction command, a bdev reads the

union of the read segment and the reconstructed segment into

memory. Note that the union of the two segments may not be a

continuous interval. In such a case, the bdev also reads the blocks in

between to avoid an extra I/O. Once data are loaded into memory,

a non-reducer bdev prioritizes sending the partial result to the re-

ducer. A reducer needs to wait for the expected partial results before

nalizing the reconstructed data. The procedure is almost identical

to handling of 𝑏𝑑𝑒𝑣𝑃 in partial stripe write. And we take the same

approach to handle late arrival of a Reconstruction command.

Randomized single reducer vs. tree-structured reduce. Intu-
itively, tree-structured reduce may better balance the load between

the bdevs. However, the topology of reduction is irrelevant in our

design space because all the bdevs can be randomly assigned to

any node in a tree. We prove that random selection is optimal with

homogeneous network on each bdev.
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Theorem 1. If each bdev is assigned to a random node in the

reduction tree, the average outbound and inbound trac is xed for

any tree topology.

Proof. Assume that the given reduction tree has 𝑛 nodes in

total. Because each piece of retrieved data is of the same size in

data reconstruction, we further assume that each inbound edge at a

node represents a unit of inbound trac, and each outbound edge

represents a unit of outbound trac.

All nodes in a tree has one outbound edge except the root node.

In dRAID design, the root node is the reducer which sends the

reconstructed data to host, so there is an extra outbound edge at

the root node. Therefore, each node has exactly one outbound edge,

which indicates the average outbound trac is 1.

Assume node 𝑛𝑖 has 𝐼𝑖 inbound edges. We have the total inbound

trac

∑𝑛
𝑖=1 𝐼𝑖 = 𝑛 − 1 because there are 𝑛 − 1 edges in the tree.

Therefore, the average inbound trac is
𝑛−1
𝑛 . �

6.2 Bandwidth-Aware Reconstruction
However, network is often heterogeneous at a certain point in the

real world, which makes randomization sub-optimal. In dRAID, we

can tune the chance that a bdev is selected as the reducer in order

to adjust load on that bdev and avoid network congestion.

Problem formulation. Let available bandwidth on bdev 𝑖 be 𝐵𝑖 ,

total read load per second on the failed bdev be 𝐿, the chance that

bdev 𝑖 is selected as the reducer be 𝑃𝑖 , and the total number of

available bdevs be 𝑛. The expected remaining bandwidth on bdev 𝑖

is formulated as:

𝑅𝑖 = 𝐵𝑖 − 𝑃𝑖 × (𝑛 − 1) × 𝐿 ∀ 1 ≤ 𝑖 ≤ 𝑛 (1)

Our goal is to maximize the smallest 𝑅𝑖 so that each bdev has

enough headroom for an unexpected load spike.

𝑚𝑎𝑥 min

∀ 1≤𝑖≤𝑛
𝑅𝑖 (2)

Because only one reducer is selected in each reconstruction. The

following constraints must be satised:

𝑛∑︁
𝑖=1

𝑃𝑖 = 1 (3)

0 ≤ 𝑃𝑖 ≤ 1 ∀ 1 ≤ 𝑖 ≤ 𝑛 (4)

A weakness of this approach is that it assumes a pre-knowledge

of the expected reconstruction load. It can only work if the storage

array is taken oine during recovery and a background job spawns

to reconstruct lost data from a disaster.

In many cases, RAID array is kept online during recovery. To

handle dynamic data reconstruction load, we replace 𝐿 with EWMA

(Exponential Weighted Moving Average) of reconstruction load

𝐿𝐸𝑊𝑀𝐴 as an indicator of future load. And we periodically update

all 𝑃𝑖 values to react to load changes.

7 DISCUSSION
Oloading the host-side controller. By design, the host-side

controller can also be ooaded to a storage server. There are pros

and cons by doing that. On the one hand, a full ooading further

reduces resource usage on the host side which may benet the users.

On the other hand, it creates another single point of failure and may

slightly increase the latency with another NVMe-oF abstraction

layer and additional I/O overlay.

RDMA scalability. We choose to use RDMA RC as it provides

lower latency and utilizes fewer CPUs than TCP or RDMA un-

reliable datagram (UD). The limited scalability of RC should not

become a bottleneck for dRAID, because there are two key facts

unveiled by prior work. (𝑖) RC can scale up to 700 queue pairs (QPs)

without performance degradation [49]. (𝑖𝑖) The common range

of number of data drives in a RAID array is between 3 to 26 [31].

Unless an uncommonly large array is considered, a server equipped

with a modern RNIC should not experience cache thrashing.

Server CPU usage. In general, disaggregated storage is expected to
use very limited compute on the server side. i10 uses four x86 cores

to saturate the full bandwidth of a high-end SSD [33]. Gimbal argues

that a wimpy ARM core is enough to saturate bandwidth of a PCIe

SSD [48]. Distributing parity calculation to storage servers certainly

creates extra burden. To show dRAID is feasible, we strictly limit

dRAID to use only one core per SSD on the storage server. Enabled

by storage acceleration technology of modern server CPUs [17, 18],

our experiment shows that dRAID uses <25% of the CPU cycles,

which implies that dRAID is resource-conservative.

Generalization to other erasure coding systems. Erasure cod-
ing is the core of parity-based RAID. Besides standard RAID-5/6,

there are many variations of RAID systems based on erasure cod-

ing [37–39, 51]. Most erasure codes can also be generated in parallel,

so I/O disaggregation still applies and can be implemented with

somemore eort. Note that dRAID requires RDMANICs and NVMe

SSDs to maximize I/O parallelism, which may not be supported by

some of the existing storage systems.

8 IMPLEMENTATION
We have implemented a prototype of dRAID on top of SPDK in

~9800 lines of C/C++ code. The core implementation of dRAID

consists of a host-side controller and a server-side controller. We

refer to the SPDK RAID-5 POC [19] developed by Intel engineers

who actively work on Linux software RAID.

The host-side controller implements a virtualized user-space

block device interface, and directly establishes an RDMAconnection

with each remote storage server. Similar to other RDMA-based

NVMe-oF implementations, the host-side controller is the passive

side in the one-sided RDMA data transfer. The server-side controller

is an SPDK application that opens an NVMe drive. It creates a

connection with all the other storage servers. We allocate 128MB

memory buers for each bdev, which is sucient to saturate the

drive bandwidth with a reasonable chunk size.

There are two implementation choices which signicantly im-

pact the performance. (𝑖) We leverage ISA-L (Intelligent Storage

Acceleration Library) [18] to accelerate operations such as XOR and

Galois eld multiplication when generating parity and reconstruct-

ing data. This allows dRAID to benet from modern x86 instruction

sets. (𝑖𝑖) We implement a system optimization to enable concur-

rent read operations on a stripe, while the SPDK POC locks the

corresponding stripe during a normal read.
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Figure 9: RAID-5 normal-state read on dierent I/O sizes
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Figure 10: RAID-5 write on dierent I/O sizes

9 EVALUATION
9.1 Experiment Methodology
Testbed setup.Our testbed comprises 19 RDMA-capable x86 servers

with NVMe SSDs equipped on CloudLab [29]. Each server has an

24-core AMD EPYC 7402P processor, 128GB memory, two Dell

Ent NVMe AGN MU U.2 1.6 TB SSDs, a Mellanox ConnectX-5 Ex

100Gbps NIC, and a Mellanox ConnectX-5 25Gbps NIC. All servers

are connected to a Dell Z9264 switch. We run CentOS Stream re-

lease 8 on all nodes with the Linux kernel version 4.18.0-358. The

SPDK version that we use is 21.10.

Workloads and evaluation metrics. We use FIO [15] to evaluate

performance of a raw RAID block device. All workloads are random

accesses to the block device. We use YCSB [27] for the application

evaluation. For each benchmark, we evaluate both throughput and

latency while focusing on throughput. For each metric, we evaluate

both RAID-5 and RAID-6. We use 128 KB I/O size, 512 KB chunk

size (Linux software RAID default value), and 8 remote targets as

the default setting unless otherwise specied. We only show the

RAID-5 results in this section. The RAID-6 results are included
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Figure 11: RAID-5 write on dierent chunk sizes
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Figure 12: RAID-5 write on dierent stripe widths

in Appendix A, where dRAID benets further from the ooaded

parity calculation to storage servers.

Comparison schemes. We compare dRAID to Linux software

RAID (MD driver) and the RAID POC for SPDK. We limit both

dRAID and SPDK to use one core on each remote target.

State-of-the-art RAID system FusionRAID [36] only optimizes

for latency reduction. Due to the imperfect implementation of Fu-

sionRAID, we are unable to run FIO against it. We conrm with

the authors that FusionRAID is not expected to outperform Linux

software RAID in terms of throughput. IODA [45] also targets tail

latency reduction and requires device-level modications, which

does not apply to commodity SSDs.

Our initial experiment with Linux software RAID shows that

its performance is nowhere near the theoretical bound. So we turn

to the SPDK RAID-5 POC implemented by Intel developers [19],

which is the best RAID-5 implementation in terms of performance

to the best of our knowledge. It is implemented in user space, and

has very limited use of locks. To make a fair and comprehensive

comparison, we further enhance it by integrating ISA-L [18] and

adding RAID-6 functionality to it.

155



ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Junyi Shu, Ruidong Zhu, Yun Ma, Gang Huang, Hong Mei, Xuanzhe Liu, and Xin Jin

0% 25% 50% 75% 100%
Read Ratio

0
2000
4000
6000
8000

10000
12000
14000

B
an

dw
id

th
(M

B
/s

) Linux
SPDK
dRAID

0% 25% 50% 75% 100%
Read Ratio

0

500

1000

1500

2000

A
vg

La
te

nc
y

(u
s) Linux

SPDK
dRAID

Figure 13: RAID-5 write on dierent read/write ratios
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Figure 14: RAID-5 latency vs. bandwidth

9.2 Normal-State Read
We rst evaluate the read performance in normal state. We use six

remote storage targets which are more than enough to saturate

bandwidth of the 100GbpsNIC. In Figure 9, we compare bandwidth

of all three systems under similar latency for each I/O size. All

systems reach the NIC goodput (~92Gbps) beyond 64 KB I/O size.

This is expected because all three systems are implemented in a

similar way and read operation incurs extremely low overhead.

dRAID shows a signicant performance gain on small I/O sizes

attributed to the lock-free implementation of normal read in dRAID.

9.3 Normal-State Write
We next evaluate normal-state write performance. Using eight re-

mote targets is not an optimal setup for dRAID as they can only

provide roughly 5000MB/s bandwidth for small writes. Prior work

did a large-scale empirical study and showed that more than 80%

RAID arrays in production consist of eight or more drives [31].

Therefore, the results should be seen as a lower bound of the im-

provement for a common RAID setup.
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Figure 15: RAID-5 degraded read on dierent I/O sizes
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Figure 16: RAID-5 degraded read on dierent stripe widths

Impact of I/O size. dRAID targets partial stripe write. The size

of a stripe with eight drives and 512 KB chunk size is 3584 KB for

RAID-5. We evaluate full stripe write, reconstruct write, and read-

modify-write. For RAID-5, I/O sizes below 1536 KB trigger read-

modify-write, reconstruct write corresponds to the range between

1536 KB and 3584 KB, and a 3584 KB write triggers full stripe write.

In Figure 10, dRAID shows 1.7× throughput improvement at

128 KB. The performance does not improve further between 256 KB

and 1024 KB, because dRAID reaches the maximum bandwidth

that eight SSDs can provide on read-modify-write. Reconstruct

write is triggered at 2048 KB and dRAID shows 1.5× throughput

improvement. This is expected because the overhead of reconstruct

write is less than that of read-modify-write but greater than that of

full stripe write. Throughput of dRAID and SPDK is about the same

at 3584 KB because they handle full stripe write in the same way.

Impact of chunk size.Chunk size has an opposite eect to I/O size.

Chunk sizes that are small enough result in full stripe write for most

I/Os. We evaluate chunk sizes between 32 KB and 1024 KB, which

are common settings in practice. Figure 11 shows the results. dRAID
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Figure 17: Reconstruction performance
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Figure 18: RAID-5 degraded-state write on dierent I/O sizes

runs at full drive bandwidth with chunk sizes between 128 KB and

1024 KB and provides up to 1.7× throughput improvement.

Scalability on stripe width. It is important for RAID to scale

out because most production RAID arrays consist of more than

eight drives. In Figure 12, Linux software RAID shows an opposite

trend due to high overhead. Both SPDK and dRAID can scale out

with small stripe widths. However, the best throughput SPDK can

achieve is half of the NIC goodput (~46Gbps), because one SPDK

read-modify-write triggers two underlying writes.

In contrast, dRAID shows linear scalability from 4 to 18 remote

targets, and achieves 84Gbps with 18 remote targets. It can scale

further towards the NIC goodput. We do not evaluate larger stripe

widths, as our testbed only has 19 servers.

Impact of read/write ratio. We also evaluate dierent read/write

ratios. In Figure 13, dRAID shows 1.4×-1.7× throughput improve-

ment for all read/write ratios except for read-only workload. With

only eight remote targets, the bottleneck is shifted to the drive band-

width, so dRAID is heavily congested with 50% write, which leads to

higher latency. We show that dRAID can provide further improve-

ment on read/write mix workload than on write-only workload

with a greater stripe width in the next evaluation.

Latency vs. throughput. We evaluate how latency changes as we

increase the load. We use 18 remote targets in order to maximize

the performance. We increase the load by adding on-the-y I/Os

gradually. Figure 14a illustrates the relationship between through-

put and latency under write-only load. Theoretically, the maximum

throughput of dRAID is ~92Gbps, while SPDK can only reach half

of it. Both dRAID and SPDK operate at their theoretical bound.

We also evaluate 50% write workload. Theoretically, dRAID can

reach ~92Gbps for both read and write, while SPDK cannot surpass
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Figure 19: RocksDB throughput (KIOPS) on RAID-5

~31Gbps. In Figure 14b, dRAID shows up to 3× throughput im-

provement. The maximum throughput dRAID provides is close to

the NIC goodput. Note that dRAID may further approach the upper

bound if more drives are added, because 18 remote SSDs cannot

saturate ~92Gbps read-modify-write with a reasonable latency.

9.4 Degraded-State Read
Impact of I/O size. Note that only one out of eight I/Os triggers

reconstruction on a degraded array of stripe width 8. Figure 15

compares the performance of all three systems. Linux software

RAID can only reach 834MB/s. dRAID reaches 95% of normal-state

read throughput, while SPDK achieves only 57% of that.

Scalability on stripe width. In Figure 16, the throughput of Linux

software RAID gets worse with larger stripe widths. SPDK reaches

its maximum throughput at stripe width 6, and becomes worse

as stripe width increases. On the contrary, dRAID throughput ap-

proaches normal-state read performance as more remote targets

are added. The throughput improvement achieved by dRAID is up

to 2.4×. Latency of dRAID becomes higher than SPDK at stripe

width 16 because dRAID runs at a signicantly higher throughout.

In Figure 17a, all reads are degraded when reconstructing a drive,

dRAID also shows a near-optimal throughput for all stripe widths.

Impact of network heterogeneity. We also evaluate dRAID per-

formance over remote storage targets with heterogeneous network

to verify the eectiveness of our bandwidth-aware reconstruction

algorithm. We use a mix of 25Gbps NICs (enough to saturate the

read bandwidth of a single SSD) and 100Gbps NICs. As Figure 17b

illustrates, bandwidth-aware reconstruction algorithm improves

read bandwidth by 53% comparing to random reducer selection.

9.5 Degraded-State Write
Although handling degraded-statewrite ismuchmore complex than

normal-state write, minor performance degradation is expected

because only one out of eight I/Os triggers data reconstruction

of the failed drive. Figure 18 shows that performance of all three

systems drops around 5% comparing to normal state. dRAID still

outperforms SPDK by up to 1.7×.

9.6 Application Performance

RocksDB performance. RocksDB [28] runs atop a user-space

lesystem BlobFS implemented in SPDK. We run a single instance

157



ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Junyi Shu, Ruidong Zhu, Yun Ma, Gang Huang, Hong Mei, Xuanzhe Liu, and Xin Jin

YCSB-A
YCSB-B

YCSB-C
YCSB-D

YCSB-F
0

20

40

60

80

100

120

Th
ro

ug
hp

ut
(K

IO
P

S
) SPDK

dRAID

YCSB-A
YCSB-B

YCSB-C
YCSB-D

YCSB-F
0

200
400
600
800

1000
1200
1400
1600

A
vg

La
te

nc
y

(u
s)

SPDK
dRAID

Figure 20: Object store on normal-state RAID-5

of RocksDB which BlobFS only supports. Figure 19a shows normal-

state performance. YCSB-A and YCSB-F have the highest write

proportion, and dRAID improves their IOPS by 1.27× and 1.28× re-

spectively. Further improvement can be observed for all workloads

in degraded state in Figure 19b.

dRAID provides a lower speedup on RocksDB than on a raw

RAID array, because RocksDB and BlobFS incur additional overhead

by implementing complex data structures and using locks, resulting

in limited throughput of a single instance [48]. Indeed, super-blocks

in BlobFS are accessed more frequently than other segments on the

array. In most cases, less than 5% of the total bandwidth is utilized

by a RocksDB instance. The results indicate bypassing BlobFS and

co-optimizing KV store can further boost the performance.

Object store performance. To further evaluate dRAID perfor-

mance under high throughput, we implement a hash-based object

store that runs directly on the block device layer. We tune YCSB

to generate 200 K 128 KB objects and make 200 K requests in total.

We set the distribution to uniform so that the maximum through-

put of the object store can be observed without loading too many

objects. (𝑖) Figure 20 shows IOPS and latency of each workload

under normal state. dRAID achieves 1.7× and 1.5× improvement

on YCSB-A and YCSB-F respectively. Very limited improvement on

read-heavy workloads (YCSB-B/C/D) is expected because dRAID fo-

cuses on write optimization. (𝑖𝑖) Figure 21 shows IOPS and latency

of each workload under degraded state. dRAID further improves

the throughput, especially for the read-heavy workloads. dRAID

outperforms SPDK by ~2.35× on YCSB-B/C/D.

10 RELATEDWORK

RAID optimization. RAID optimization has been an extensively

studied area. Partial stripe write is identied as the major perfor-

mance weakness of parity-based RAID. Logging is a classic tech-

nique to shape write I/Os to RAID-friendly I/Os [56, 59]. Purity [26],

Flash-Aware RAID [35], and PPC [25] leverage non-volatile memory

to stage writes and shape them as full stripe writes.

New challenges also arise on novel storage media. SWAN [40]

and GGC [41] alleviate impact of SSD garbage collection by coor-

dinating GC at array level. FusionRAID [36], ToleRAID [31], and

TTFLASH [60] mitigate latency spike by detouring from SSDs under

GC. IODA [45] exploits a recent NVMe IOD interface for predictable

SSD array performance. RAID layout is also evolving for faster re-

covery [61] and further space saving [37, 38].
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Figure 21: Object store on degraded-state RAID-5

A highly related system is TickerTAIP [23]. Both TickerTAIP

and dRAID calculate parity in a distributed manner. Most of the

performance gain of TickerTAIP comes from parallel parity calcu-

lation. After three decades, today’s CPUs can handle parity calcula-

tion rather eciently [17]. dRAID instead optimizes for disaggre-

gated storage architecture and modern datacenter hardware with

bandwidth-optimal data movement and asynchronous I/O pipeline.

Disaggregated storage. NVMe-oF [4] is one of the fastest growing

disaggregated storage options. Recent research focuses on QOS

guarantee of disaggregated storage. ReFlex [43] designs a credit-

based QOS scheduler, and Gimbal [48] applies a similar approach to

SmartNIC JBOFs. i10 [33] and blk-switch [34] design an in-kernel

remote storage stack which runs over TCP network and can achieve

comparable performance to RDMA-based solutions. Unlike previous

work, dRAID does not optimize the performance of a standalone

remote storage target, but rather a redundant array of them.

11 CONCLUSION
We presented dRAID, a software-based disaggregated RAID stor-

age system that achieves linear scalability within NIC bandwidth.

dRAID leverages the unique opportunities of disaggregated storage

to accelerate RAID storage by optimizing the data path of parity

generation and delivery. We believe that dRAID exemplies a new

generation of parity-based storage arrays backed by disaggregated

storage. This work does not raise any ethical issues.
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Figure 22: RAID-6 normal-state read on dierent I/O sizes
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Figure 23: RAID-6 write on dierent I/O sizes

A RAID-6 EVALUATION
We also implement dRAID support for RAID-6 and conduct the

evaluation using FIO. We use the same settings as for the RAID-5

evaluation. Overall, the results match our expectation, and almost

the same conclusions can be drawn.

A.1 Normal-State Read
In Figure 22, all systems achieve the NIC goodput (~92Gbps) beyond

64 KB I/O size. the results are almost identical to RAID-5, because

the distributed parity layout of RAID-6 also allows a RAID array to

fully utilize the bandwidth of all drives.

A.2 Normal-State Write

Impact of I/O size. The size of a stripe with eight drives and 512 KB
chunk size is 3072 KB for RAID-6, while the stripe size of RAID-5

is 3584 KB. As Figure 23 shows, dRAID improves throughput by

2.3× at 128 KB. The extra improvement is because dRAID saves an
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Figure 24: RAID-6 write on dierent chunk sizes
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Figure 25: RAID-6 write on dierent stripe widths
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Figure 26: RAID-6 write on dierent read/write ratios

additional outbound network I/O to the second parity in RAID-6.

Overall, RAID-6 throughput is about two thirds of that of RAID-5

on small writes. This matches our expectation as RAID-5 triggers

four drive I/Os while RAID-6 triggers six drive I/Os.

Impact of chunk size. In Figure 24, the performance dierence

between SPDK and dRAID is also more signicant than RAID-5.
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Figure 27: RAID-6 latency vs. bandwidth
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Figure 28: RAID-6 degraded read on dierent I/O sizes

Note that dRAID improves throughput by 2.6× for small chunk

sizes. SPDK suers a higher overhead from RAID-6 when parity

calculation is mostly on the host side.

Scalability on stripe width. In Figure 25, SPDK can hardly scale

out and has an unsteady performance on RAID-6. dRAID shows

near-linearly scalability and consistently low latency on all stripe

widths. It should scale further towards the NIC goodput with more

servers added to the testbed.

Impact of read/write ratio. In Figure 26, dRAID shows 1.6×-2.3×
throughput improvement for all read/write ratios except for read-

only workload. The results are similar to those of RAID-5 except

for slightly larger performance gap between SPDK and dRAID.

Latency vs. throughput.We also evaluate how latency changes

as we increase the load. In Figure 27, given a certain bandwidth,

dRAID consistently shows lower latency than SPDK for both WO

and RW workload. Indeed, the maximum bandwidths that dRAID

4 6 8 10 12 14 16 18
Stripe Width

0

2000

4000

6000

8000

10000

12000

B
an

dw
id

th
(M

B
/s

)

Linux
SPDK
dRAID

4 6 8 10 12 14 16 18
Stripe Width

0

100

200

300

400

500

600

700

800

A
vg

La
te

nc
y

(u
s)

Linux
SPDK
dRAID

Figure 29: RAID-6 degraded read on dierent stripe widths
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Figure 30: RAID-6 degraded-state write on dierent I/O sizes

achieves onWO and RWworkloads are 8692MB/s and 15 822MB/s
respectively, which gives ~3× improvement over SPDK.

A.3 Degraded-State Read
Impact of I/O size. In Figure 28, the results are close to those of

RAID-5. dRAID degraded-state throughput is about 95% of normal-

state read, while SPDK is 61%. Reconstructing RAID-6 data does

not incur too much additional overhead.

Impact of stripe width. As Figure 29 demonstrates, SPDK reaches

its maximum throughput at stripe width 8, and the performance is

slightly worse beyond that. dRAID can achieve stable performance

with dierent stripe widths.

A.4 Degraded-State Write
In Figure 30, SPDK experiences 23% performance drop, while dRAID

performance only drops by 11%. This leads to a 2.6× performance

gap between SPDK and dRAID.
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B ARTIFACT APPENDIX
B.1 Abstract
We provide the artifact for the ASPLOS 2023 paper "Disaggre-

gated RAID Storage in Modern Datacenters", including the main

implementation of dRAID, CloudLab [29] testbed setup scripts,

FIO [15] experiment scripts (§9.2-§9.5), and YCSB [27] experiment

scripts (§9.6).

All of the experiments must be conducted on real hardware and

require 20 servers, each with an AMD EPYC processor, 128GB

memory, an unmounted enterprise-grade NVMe SSD, a Mellanox

ConnectX-5 Ex 100Gbps NIC. CloudLab Utah c6525-100g instances

meet the requirement, and they are publicly accessible and free. To

run the experiments, a customized version of SPDK [20] and all of

its dependencies are required.

The experiment workow is described in READMEs of our repos-

itory. Assuming the conditions of the NVMe SSDs have not changed

signicantly, the results in this paper should be reproducible on

CloudLab testbed with <20% variation. The provided scripts have

been veried only on CloudLab. If you wish to run the experiments

on a dierent testbed, please adjust the scripts accordingly.

B.2 Artifact Check-List (Meta-information)
• Program: We use synthetic workloads generated by FIO and YCSB

for evaluation. The provided scripts download the benchmark tools

for you.

• Compilation:We use g++ 8.5 which is included in CloudLab OS

Image for code compilation.

• Run-time environment: dRAID implementation is Linux-specic.

The provided scripts are created for CentOS 8 and require root access.

dRAID depends on SPDK and its dependencies.

• Hardware: x86 cores, enterprise-grade NVMe SSDs, and RDMA

NICs are required. CloudLab Utah c6525-100g instances are publicly

available for use.

• Run-time state: dRAID is sensitive to the SSDs conditions.

• Execution: Scripts or commands for execution are provided in our

repository. Please refer to the READMEs.

• Metrics: The main metrics are bandwidth, latency and IOPS.

• Output: The provided scripts output standard FIO and YCSB statis-

tics to stdout.

• Experiments: Scripts or commands for running the experiments

are provided in our repository. <20% variation is expected.

• How much disk space required (approximately)?: <500GB.
• How much time is needed to prepare workow (approxi-
mately)?: <1 hour.
• How much time is needed to complete experiments (approxi-
mately)?: <24 hours.
• Publicly available?: The code is publicly available at https://gith

ub.com/pkusys/dRAID.

• Code licenses: Apache License 2.0.
• Archived: https://doi.org/10.5281/zenodo.7587687.

B.3 Description
B.3.1 How to Access. Clone the git repository at https://github.c

om/pkusys/dRAID. An archived copy is also available [54].

B.3.2 Hardware Dependencies. All of the experiments must be

conducted on real hardware and require 20 servers, each with an

AMD EPYC processor, 128GB memory, an unmounted enterprise-

grade NVMe SSD, a Mellanox ConnectX-5 Ex 100Gbps NIC. The

provided scripts can be executed on CloudLab Utah c6525-100g

instances. You will need a CloudLab account to use them.

B.3.3 Soware Dependencies. dRAID implementation is Linux-

specic. And the provided scripts are created for CentOS 8. To run

the experiments, a customized version of SPDK and all of its de-

pendencies (e.g., DPDK, ISA-L, libibverbs +librdmacm) are required.

The provided scripts will install them for you.

B.4 Installation
Please see the setup directory of our repository for installing dRAID

on CloudLab testbed. You can nd the basic test script under the

dRAID directory of the repository. Please follow the steps in the

corresponding README to run the basic test.

B.5 Experiment Workow
The detailedworkow of setting up the environments and executing

the experiments are described in the corresponding READMEs of

our repository.

B.6 Evaluation and Expected Results
The results are output to stdout in the standard FIO/YCSB formats.

Assuming the conditions of the NVMe SSDs have not changed

signicantly, the results in this paper should be reproducible on

CloudLab testbed with <20% variation.

B.7 Experiment Customization
If you want to run the experiment with a dierent parameter (e.g.,

I/O size, I/O depth), you can modify the run.sh script of the corre-

sponding experiment.

B.8 Notes
• Figure 17 requires a dierent testbed setup and a bit code

hacking, which we do not include in this artifact.

• Ignore the warning "RPC client command timeout". It does

not aect the experiments.

• Ignore the error message "io_device Raid0 not unregistered".

We have not implemented graceful shutdown yet.

• If you see RDMA related errors or the experiment hangs for

>2 minutes at the beginning, this is due to race conditions

caused by imperfect implementation of the start-up process.

You can safely kill and rerun the script.
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